永磁同步电机(PMSM)因其无需励磁电流、运行效率和功率密度高,在交流调速系统中被广泛的应用,但PMSM高性能的矢量控制需要精确的转子位置和速度信号来实现磁场定向。在传统控制中,一般采用机械式传感器来检测转子位置和转速,但是机械式传感器存在诸如成本高、可靠性低、不易维护等问题,使得无速度/位置传感器控制技术成为永磁同步电机控制中的热点问题。虽然目前已有较多的研究成果,但是所采用的方法大多是基于电机基波方程的分析,一般不适用于低速甚至零速,并且对电机参数较为敏感,鲁棒性差。本文正是为了解决这个问题,而采用高频信号注入法实现转子位置估算,这种方法适合于低速甚至零速,对电机参数的变化不敏感,鲁棒性强。主要做了如下的工作: 首先详细介绍了永磁同步电机三种基本结构,在建立了旋转坐标系下永磁同步电机数学模型的基础上叙述了其矢量控制原理,分析了各种现有的永磁同步电机无速度/位置传感器控制策略;其次在永磁同步电机矢量控制的基础上详细讨论了旋转高频电压信号注入法与脉振高频电压信号注入法提取转子位置的基本原理,并在此基础上利用MATLAB/SIMULINK仿真工具建立了整个永磁同步电机无速度/位置传感器矢量控制系统的模型,进行了仿真研究,仿真结果验证了控制算法的正确性。最后利用TI公司推出的数字信号处理器DSP芯片TMS320F2812,实现了基于脉振高频信号注入法的永磁同步电机无速度/位置传感器的实验运行,实验结果验证了这种方法适合于低速运行,对电机参数的变化不敏感,鲁棒性强。
上传时间: 2013-06-06
上传用户:Neal917
随着家用空调的普及应用,空调已日渐成为耗能大户。我国经济建设多年来高速发展,正面临能源日益紧张的问题,由于空调节能尚有空间,因此人们普遍关注空调节能技术。在家用空调的各种节能技术中,直流压缩机变频驱动是发展的主流方向。从驱动方式上看,直流压缩机可以采用方波控制或矢量控制。与方波控制相比,矢量控制的空调直流压缩机具有噪声低、振动小、效率高等特点,更加符合节能和环保的发展方向。 本文主要研究了适用于空调压缩机负载的无转子位置传感器永磁同步电机矢量控制方法。首先从电机的基本方程入手,详细推导了永磁同步电机矢量控制的数学模型。详细分析了各种电流控制策略特点,提出了采用适合直流压缩机驱动的MTPA控制方式。 其次提出了具有凸极效应的压缩机永磁同步电机的一种简化模型,得到了适用于IPMSM的滑模观测器,解决了IPMSM在αβ坐标系中应用滑模观测器困难的问题。针对压缩机运行特点,采用全维状态观测器方法,实现IPMSM反电动势的观测,根据反电动势计算出电机转子位置和转速,实现了无传感器矢量控制。本文详细分析了全维状态观测器的极点配置方法,通过将四个极点配置在相同位置,简轻了计算量,也便于实现。 第三,由于反电动势估算法在电机低转速下不能正确估算转子位置,无法正常闭环起动,本文提出了一种简单的用于直流压缩机的起动方法,实现了压缩机的可靠起动。同时在深入分析电机等效模型的基础上,给出了一种简单的电机参数测量方法,通过简单测量和计算,得到系统实现无传感器永磁同步电机矢量控制所需的电感、电阻及反电动势系数等关键参数。 最后通过MATLAB/Simulimk7.1仿真软件对基于滑模观测器和基于全维观测器的永磁同步电机矢量控制方法进行了仿真验证,设计了以TMS320F2403数字信号处理器为控制核心的直流压缩机矢量控制实验平台,并进行了大量的实验验证。仿真及实验结果证明了本文理论分析和所提方法的正确性,并已应用于实际的直流压缩机矢量控制系统。
上传时间: 2013-06-13
上传用户:xuanchangri
变频电源具有低损耗和高效率等显著优点,其性能的优劣直接关系到整个系统的安全性和可靠性指标,随着工业上变频电源的广泛应用,对其性能参数的检测也越来越重要,因此对变频电源设备输出电参数进行测量方面的研究具有重要的意义。 论文综述了国内外各种交流变频电参数测量系统的研究现状和应用技术,根据变频设备的工作机理和输出特性,提出了系统的总体设计方案。由于变频设备的输出范围广且变化快,并且国内大部分参数测量设备都是针对工频进行设计的,基于此本文采用高速的数字处理器和改进的算法来进行控制实现。 论文首先给出了各电参数测量的国际标准和理论基础,重点分析了如何通过希尔波特变换来实现频率的测量。为了滤除不需要的高次谐波并精确的测量频率,建立了FIR滤波器模型,通过MATLAB编程进行了数字仿真,验证了算法的正确性;利用周期法进行了其它电参数的测量实现,并在Labview 中进行了仿真,作为辅助分析软件具有快速直观的特点并有很大的通用性。 在理论分析和仿真的基础上,论文设计了基于TMS320F2812 DSP的控制系统,并结合原理图介绍了各模块运行原理;重点分析了如何利用CPLD来实现时序控制的功能,并给出了VHDL设计的程序和仿真结果。最后进行软件程序上的设计,对各部分进行了程序分析和设计,各模块结构相互关联,具有很好的扩展性和移植性。
上传时间: 2013-04-24
上传用户:1054154823
正弦波逆变器理论基础知识,刘凤君老师作品,对初学者和正在进行逆变器设计及改进会有帮助
标签: 正弦波逆变器
上传时间: 2013-07-06
上传用户:liber
随着科学技术的飞速发展,电子测量技术被广泛应用在电子、机械、医疗、测控及航天等各个领域,而电子测量技术要用到各种形式的高质量信号源,因此任意波形发生器的研制就具有非常重要的现实意义。 本文便是基于DDS(DirectDigitalSynthesis)技术进行任意波形发生器研制的。要求可以产生正弦波、方波、三角波与锯齿波等常规波形,而且能够产生任意波形,从而满足研究的需要。具体工作如下: (一)介绍国内外关于任意波形发生器研究的发展情况,阐述频率合成技术的各种方式与技术对比情况,并选定直接数字频率合成技术进行研制。 (二)介绍系统的硬件设计构成与功能实现,并对系统部件进行逐一细述。选用单片机作为控制模块,使用FPGA实现DDS功能作为技术核心,并对外围电路的设计与接口技术进行分析。 (三)讲述DDS的工作原理、工作特点与技术指标,并基于FPGA芯片EP1C3T144C8进行设计,通过使用相位累加器与波形ROM等模块,实现DDS功能。同时辅以使能模块与行列式键盘,实现各种波形的灵活输出。 (四)给出系统产生的测试数据,并对影响频谱纯度的杂散与噪声产生的原因进行分析。
上传时间: 2013-04-24
上传用户:diets
文章开篇提出了开发背景。认为现在所广泛应用的开关电源都是基于传统的分立元件组成的。它的特点是频率范围窄、电力小、功能少、器件多、成本较高、精度低,对不同的客户要求来“量身定做”不同的产品,同时几乎没有通用性和可移植性。在电子技术飞速发展的今天,这种传统的模拟开关电源已经很难跟上时代的发展步伐。 随着DSP、ASIC等电子器件的小型化、高速化,开关电源的控制部分正在向数字化方向发展。由于数字化,使开关电源的控制部分的智能化、零件的共通化、电源的动作状态的远距离监测成为了可能,同时由于它的智能化、零件的共通化使得它能够灵活地应对不同客户的需求,这就降低了开发周期和成本。依靠现代数字化控制和数字信号处理新技术,数字化开关电源有着广阔的发展空间。 在数字化领域的今天,最后一个没有数字化的堡垒就是电源领域。近年来,数字电源的研究势头与日俱增,成果也越来越多。虽然目前中国制造的开关电源占了世界市场的80%以上,但都是传统的比较低端的模拟电源。高端市场上几乎没有我们份额。 本论文研究的主要内容是在传统开关电源模拟调节器的基础上,提出了一种新的数字化调节器方案,即基于DSP和FPGA的数字化PID调节器。论文对系统方案和电路进行了较为具体的设计,并通过测试取得了预期结果。测试证明该方案能够适合本行业时代发展的步伐,使系统电路更简单,精度更高,通用性更强。同时该方案也可用于相关领域。 本文首先分析了国内外开关电源发展的现状,以及研究数字化开关电源的意义。然后提出了数字化开关电源的总体设计框图和实现方案,并与传统的开关电源做了较为详细的比较。本论文的设计方案是采用DSP技术和FPGA技术来做数字化PID调节,通过数字化PID算法产生PWM波来控制斩波器,控制主回路。从而取代传统的模拟PID调节器,使电路更简单,精度更高,通用性更强。传统的模拟开关电源是将电流电压反馈信号做PID调节后--分立元器件构成,采用专用脉宽调制芯片实现PWM控制。电流反馈信号来自主回路的电流取样,电压反馈信号来自主回路的电压采样。再将这两个信号分别送至电流调节器和电压调节器的反相输入端,用来实现闭环控制。同时用来保证系统的稳定性及实现系统的过流过压保护、电流和电压值的显示。电压、电流的给定信号则由单片机或电位器提供。再次,文章对各个模块从理论和实际的上都做了仔细的分析和设计,并给出了具体的电路图,同时写出了软件流程图以及设计中应该注意的地方。整个系统由DSP板和ADC板组成。DSP板完成PWM生成、PID运算、环境开关量检测、环境开关量生成以及本地控制。ADC板主要完成前馈电压信号采集、负载电压信号采集、负载电流信号采集、以及对信号的一阶数字低通滤波。由于整个系统是闭环控制系统,要求采样速率相当高。本系统采用FPGA来控制ADC,这样就避免了高速采样占用系统资源的问题,减轻了DSP的负担。DSP可以将读到的ADC信号做PID调节,从而产生PWM波来控制逆变桥的开关速率,从而达到闭环控制的目的。 最后,对数字化开关电源和模拟开关电源做了对比测试,得出了预期结论。同时也提出了一些需要改进的地方,认为该方案在其他相关行业中可以广泛地应用。模拟控制电路因为使用许多零件而需要很大空间,这些零件的参数值还会随着使用时间、温度和其它环境条件的改变而变动并对系统稳定性和响应能力造成负面影响。数字电源则刚好相反,同时数字控制还能让硬件频繁重复使用、加快上市时间以及减少开发成本与风险。在当前对产品要求体积小、智能化、共通化、精度高和稳定度好等前提条件下,数字化开关电源有着广阔的发展空间。本系统来基本上达到了设计要求。能够满足较高精度的设计要求。但对于高精度数字化电源,系统还有值得改进的地方,比如改进主控器,提高参考电压的精度,提高采样器件的精度等,都可以提高系统的精度。 本系统涉及电子、通信和测控等技术领域,将数字PID算法与电力电子技术、通信技术等有机地结合了起来。本系统的设计方案不仅可以用在电源控制器上,只要是相关的领域都可以采用。
上传时间: 2013-06-29
上传用户:dreamboy36
数字滤波器是现代数字信号处理系统的重要组成部分之一。ⅡR数字滤波器又是其中非常重要的一类虑波器,因其可以较低的阶次获得较高的频率选择特性而得到广泛应用。 本文研究了ⅡR数字滤波器的常用设计方法,在分析各种ⅡR实现结构的基础上,利用MATLAB针对并联型结构的ⅡR数字滤波器做了多方面的仿真,从理论分析和仿真情况确定了所要设计的ⅡR数字滤波器的实现结构以及中间数据精度。然后基于FPGA的结构特点,研究了ⅡR数字滤波器的FPGA设计与实现,提出应用流水线技术和并行处理技术相结合的方式来提高ⅡR数字滤波器处理速度的方法,同时又从ⅡR数字滤波器的结构特性出发,提出利用ⅡR数字滤波器的分解技术来改善ⅡR滤波器的设计。在ⅡR实现方面,本文采用Verilog HDL语言编写了相应的硬件实现程序,将内置SignalTap Ⅱ逻辑分析器的ⅡR设计下载到FPGA芯片,并利用Altera公司的SignalTap Ⅱ逻辑分析仪进行了定性测试,同时利用HP频谱仪进行定性与定量的观测,仿真与实验测试结果表明设计方法正确有效。
上传时间: 2013-04-24
上传用户:rockjablew
频率合成技术广泛应用于通信、航空航天、仪器仪表等领域,目前,常用的频率合成技术有直接频率合成、锁相频率合成和直接数字频率合成(DDS)等。其中DDS是一种新的频率合成方法,是频率合成的一次革命。全数字化的DDS技术由于具有频率分辨率高、频率切换速度快、相位噪声低和频率稳定度高等优点而成为现代频率合成技术中的佼佼者。随着数字集成电路、微电子技术和EDA技术的深入研究,DDS技术得到了飞速的发展。 DDS是把一系列数字量化形式的信号通过D/A转换形成模拟量形式的信号的合成技术。主要是利用高速存储器作查寻表,然后通过高速D/A转换产生已经用数字形式存入的正弦波(或其它任意波形)。一个典型的DDS系统应包括以下三个部分:相位累加器可以时钟的控制下完成相位的累加;相位一幅度码转换电路一般由ROM实现;D/A转换电路,将数字形式的幅度码转换成模拟信号。 现场可编程门阵列(FPGA)设计灵活、速度快,在数字专用集成电路的设计中得到了广泛的应用。本论文主要讨论了如何利用FPGA来实现一个DDS系统,该DDS系统的硬件结构是以FPGA为核心实现的,使用Altera公司的Cyclone系列FPGA。 文章首先介绍了频率合成器的发展,阐述了基于FPGA实现DDS技术的意义;然后介绍了DDS的基本理论;接着介绍了FPGA的基础知识如结构特点、开发流程、使用工具等;随后介绍了利用FPGA实现直接数字频率合成(DDS)的原理、电路结构、优化方法等。重点介绍DDS技术在FPGA中的实现方法,给出了部分VHDL源程序。采用该方法设计的DDS系统可以很容易地嵌入到其他系统中而不用外接专用DDS芯片,具有高性能、高性价比,电路结构简单等特点;接着对输出信号频谱进行了分析,特别是对信号的相位截断误差和幅度量化误差进行了详细的讨论,由此得出了改善系统性能的几种方法;最后给出硬件实物照片和测试结果,并对此作了一定的分析。
上传时间: 2013-07-05
上传用户:suxuan110425
随着国民经济的发展和社会的进步,人们越来越需要便捷的交通工具,从而促进了汽车工业的发展,同时汽车发动机检测维修等相关行业也发展起来。在汽车发动机检测维修中,发动机电脑(Electronic Control.Unit-ECU)检测维修是其中最关键的部分。发动机电脑根据发动机的曲轴或凸轮轴传感器信号控制发动机的喷油、点火和排气。所以,维修发动机电脑时,必须对其施加正确的信号。目前,许多发动机的曲轴和凸轮轴传感器信号已不再是正弦波和方波等传统信号,而是多种复杂波形信号。为了能够提供这种信号,本文研究并设计了一种能够产生复杂波形的低成本任意波形发生器(Arbitrary Waveform Generator-AWG)。 本文提出的任意波形发生器依据直接数字频率合成(Direct Digial FrequencySynthesis-DDFS)原理,采用自行设计现场可编程门阵列(FPGA)的方案实现频率合成,扩展数据存储器存储波形的量化幅值(波形数据),在微控制单元(MCU)的控制与协调下输出频率和相位均可调的信号。 任意波形发生器主要由用户控制界面、DDFS模块、放大及滤波、微控制器系统和电源模块五部分组成。在设计中采用FPGA芯片EPF10K10QC208-4实现DDFS的硬件算法。波形调整及滤波由两级放大电路来完成:第一级对D/A输出信号进行调整;第二级完成信号滤波及信号幅值和偏移量的调节。电源模块利用三端集成稳压器进行电压值变换,利用极性转换芯片ICL7660实现正负极性转换。 该任意波形发生器与通用模拟信号源相比具有:输出频率误差小,分辨率高,可产生任意波形,成本低,体积小,使用方便,工作稳定等优点,十分适合汽车维修行业使用,具有较好的市场前景。
上传时间: 2013-05-28
上传用户:cylnpy
单片机产生正弦波,简绍了单片机产生高精度正弦波的方法
上传时间: 2013-04-24
上传用户:a296386173