虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

位串编码

  • TLC5615 c程序

    10位串行D/A转化器TLC5615

    标签: 5615 TLC 程序

    上传时间: 2013-10-31

    上传用户:362279997

  • 8251A可编程通信接口

    串行通信的特点串行通信是主机与外设交换信息的一种方式。串行通信中字节数据经一条传输线按位串行发送与串行接收。串行通信节省通信线路,可远距离传送,成本低,广泛应用在通信及计算机网络系统中。串行通信中,数据传输速率低,控制较复杂。光纤技术的出现与发展,为串行通信开辟了美好前景。串行通信的术语全双工、半双工、单工全双工: 通信双方均有发送器和接收器,经两条独立的传输线相连, 双方可同时接收与发送。                                      全双工、半双工、单工半双工:通信双方均有发送器和接收器,经一条传输线相连, 在某一时刻双方只能一个方向传输信息,线路切换后可改变传输方向。                        全双工、半双工、单工单工:通信一方为发送器,另一方为接收器,一条传输线相连, 进行单向传输。同步与异步通信方式同步方式:通信双方用统一时钟控制通信过程,                          信息传输组成数据包(数据帧)。每                          帧头尾是控制代码,中间是数据块,                          可有数百字节。不同的同步传输协                          议有不同的数据帧格式。                                     

    标签: 8251A 可编程 通信接口

    上传时间: 2013-11-19

    上传用户:wvbxj

  • 汇编+保护模式+教程

    九.输入/输出保护为了支持多任务,80386不仅要有效地实现任务隔离,而且还要有效地控制各任务的输入/输出,避免输入/输出冲突。本文将介绍输入输出保护。 这里下载本文源代码。 <一>输入/输出保护80386采用I/O特权级IPOL和I/O许可位图的方法来控制输入/输出,实现输入/输出保护。 1.I/O敏感指令输入输出特权级(I/O Privilege Level)规定了可以执行所有与I/O相关的指令和访问I/O空间中所有地址的最外层特权级。IOPL的值在如下图所示的标志寄存器中。 标  志寄存器 BIT31—BIT18 BIT17 BIT16 BIT15 BIT14 BIT13—BIT12 BIT11 BIT10 BIT9 BIT8 BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0 00000000000000 VM RF 0 NT IOPL OF DF IF TF SF ZF 0 AF 0 PF 1 CF I/O许可位图规定了I/O空间中的哪些地址可以由在任何特权级执行的程序所访问。I/O许可位图在任务状态段TSS中。 I/O敏感指令 指令 功能 保护方式下的执行条件 CLI 清除EFLAGS中的IF位 CPL<=IOPL STI 设置EFLAGS中的IF位 CPL<=IOPL IN 从I/O地址读出数据 CPL<=IOPL或I/O位图许可 INS 从I/O地址读出字符串 CPL<=IOPL或I/O位图许可 OUT 向I/O地址写数据 CPL<=IOPL或I/O位图许可 OUTS 向I/O地址写字符串 CPL<=IOPL或I/O位图许可 上表所列指令称为I/O敏感指令,由于这些指令与I/O有关,并且只有在满足所列条件时才可以执行,所以把它们称为I/O敏感指令。从表中可见,当前特权级不在I/O特权级外层时,可以正常执行所列的全部I/O敏感指令;当特权级在I/O特权级外层时,执行CLI和STI指令将引起通用保护异常,而其它四条指令是否能够被执行要根据访问的I/O地址及I/O许可位图情况而定(在下面论述),如果条件不满足而执行,那么将引起出错码为0的通用保护异常。 由于每个任务使用各自的EFLAGS值和拥有自己的TSS,所以每个任务可以有不同的IOPL,并且可以定义不同的I/O许可位图。注意,这些I/O敏感指令在实模式下总是可执行的。 2.I/O许可位图如果只用IOPL限制I/O指令的执行是很不方便的,不能满足实际要求需要。因为这样做会使得在特权级3执行的应用程序要么可访问所有I/O地址,要么不可访问所有I/O地址。实际需要与此刚好相反,只允许任务甲的应用程序访问部分I/O地址,只允许任务乙的应用程序访问另一部分I/O地址,以避免任务甲和任务乙在访问I/O地址时发生冲突,从而避免任务甲和任务乙使用使用独享设备时发生冲突。 因此,在IOPL的基础上又采用了I/O许可位图。I/O许可位图由二进制位串组成。位串中的每一位依次对应一个I/O地址,位串的第0位对应I/O地址0,位串的第n位对应I/O地址n。如果位串中的第位为0,那么对应的I/O地址m可以由在任何特权级执行的程序访问;否则对应的I/O地址m只能由在IOPL特权级或更内层特权级执行的程序访问。如果在I/O外层特权级执行的程序访问位串中位值为1的位所对应的I/O地址,那么将引起通用保护异常。 I/O地址空间按字节进行编址。一条I/O指令最多可涉及四个I/O地址。在需要根据I/O位图决定是否可访问I/O地址的情况下,当一条I/O指令涉及多个I/O地址时,只有这多个I/O地址所对应的I/O许可位图中的位都为0时,该I/O指令才能被正常执行,如果对应位中任一位为1,就会引起通用保护异常。 80386支持的I/O地址空间大小是64K,所以构成I/O许可位图的二进制位串最大长度是64K个位,即位图的有效部分最大为8K字节。一个任务实际需要使用的I/O许可位图大小通常要远小于这个数目。 当前任务使用的I/O许可位图存储在当前任务TSS中低端的64K字节内。I/O许可位图总以字节为单位存储,所以位串所含的位数总被认为是8的倍数。从前文中所述的TSS格式可见,TSS内偏移66H的字确定I/O许可位图的开始偏移。由于I/O许可位图最长可达8K字节,所以开始偏移应小于56K,但必须大于等于104,因为TSS中前104字节为TSS的固定格式,用于保存任务的状态。 1.I/O访问许可检查细节保护模式下处理器在执行I/O指令时进行许可检查的细节如下所示。 (1)若CPL<=IOPL,则直接转步骤(8);(2)取得I/O位图开始偏移;(3)计算I/O地址对应位所在字节在I/O许可位图内的偏移;(4)计算位偏移以形成屏蔽码值,即计算I/O地址对应位在字节中的第几位;(5)把字节偏移加上位图开始偏移,再加1,所得值与TSS界限比较,若越界,则产生出错码为0的通用保护故障;(6)若不越界,则从位图中读对应字节及下一个字节;(7)把读出的两个字节与屏蔽码进行与运算,若结果不为0表示检查未通过,则产生出错码为0的通用保护故障;(8)进行I/O访问。设某一任务的TSS段如下: TSSSEG                  SEGMENT PARA USE16                        TSS     <>             ;TSS低端固定格式部分                        DB      8 DUP(0)       ;对应I/O端口00H—3FH                        DB      10000000B      ;对应I/O端口40H—47H                        DB      01100000B      ;对用I/O端口48H—4FH                        DB      8182 DUP(0ffH) ;对应I/O端口50H—0FFFFH                        DB      0FFH           ;位图结束字节TSSLen                  =       $TSSSEG                  ENDS 再假设IOPL=1,CPL=3。那么如下I/O指令有些能正常执行,有些会引起通用保护异常:                         in      al,21h  ;(1)正常执行                        in      al,47h  ;(2)引起异常                        out     20h,al  ;(3)正常实行                        out     4eh,al  ;(4)引起异常                        in      al,20h  ;(5)正常执行                        out     20h,eax ;(6)正常执行                        out     4ch,ax  ;(7)引起异常                        in      ax,46h  ;(8)引起异常                        in      eax,42h ;(9)正常执行 由上述I/O许可检查的细节可见,不论是否必要,当进行许可位检查时,80386总是从I/O许可位图中读取两个字节。目的是为了尽快地执行I/O许可检查。一方面,常常要读取I/O许可位图的两个字节。例如,上面的第(8)条指令要对I/O位图中的两个位进行检查,其低位是某个字节的最高位,高位是下一个字节的最低位。可见即使只要检查两个位,也可能需要读取两个字节。另一方面,最多检查四个连续的位,即最多也只需读取两个字节。所以每次要读取两个字节。这也是在判别是否越界时再加1的原因。为此,为了避免在读取I/O许可位图的最高字节时产生越界,必须在I/O许可位图的最后填加一个全1的字节,即0FFH。此全1的字节应填加在最后一个位图字节之后,TSS界限范围之前,即让填加的全1字节在TSS界限之内。 I/O许可位图开始偏移加8K所得的值与TSS界限值二者中较小的值决定I/O许可位图的末端。当TSS的界限大于I/O许可位图开始偏移加8K时,I/O许可位图的有效部分就有8K字节,I/O许可检查全部根据全部根据该位图进行。当TSS的界限不大于I/O许可位图开始偏移加8K时,I/O许可位图有效部分就不到8K字节,于是对较小I/O地址访问的许可检查根据位图进行,而对较大I/O地址访问的许可检查总被认为不可访问而引起通用保护故障。因为这时会发生字节越界而引起通用保护异常,所以在这种情况下,可认为不足的I/O许可位图的高端部分全为1。利用这个特点,可大大节约TSS中I/O许可位图占用的存储单元,也就大大减小了TSS段的长度。 <二>重要标志保护输入输出的保护与存储在标志寄存器EFLAGS中的IOPL密切相关,显然不能允许随便地改变IOPL,否则就不能有效地实现输入输出保护。类似地,对EFLAGS中的IF位也必须加以保护,否则CLI和STI作为敏感指令对待是无意义的。此外,EFLAGS中的VM位决定着处理器是否按虚拟8086方式工作。 80386对EFLAGS中的这三个字段的处理比较特殊,只有在较高特权级执行的程序才能执行IRET、POPF、CLI和STI等指令改变它们。下表列出了不同特权级下对这三个字段的处理情况。 不同特权级对标志寄存器特殊字段的处理 特权级 VM标志字段 IOPL标志字段 IF标志字段 CPL=0 可变(初POPF指令外) 可变 可变 0  不变 不变 可变 CPL>IOPL 不变 不变 不变 从表中可见,只有在特权级0执行的程序才可以修改IOPL位及VM位;只能由相对于IOPL同级或更内层特权级执行的程序才可以修改IF位。与CLI和STI指令不同,在特权级不满足上述条件的情况下,当执行POPF指令和IRET指令时,如果试图修改这些字段中的任何一个字段,并不引起异常,但试图要修改的字段也未被修改,也不给出任何特别的信息。此外,指令POPF总不能改变VM位,而PUSHF指令所压入的标志中的VM位总为0。 <三>演示输入输出保护的实例(实例九)下面给出一个用于演示输入输出保护的实例。演示内容包括:I/O许可位图的作用、I/O敏感指令引起的异常和特权指令引起的异常;使用段间调用指令CALL通过任务门调用任务,实现任务嵌套。 1.演示步骤实例演示的内容比较丰富,具体演示步骤如下:(1)在实模式下做必要准备后,切换到保护模式;(2)进入保护模式的临时代码段后,把演示任务的TSS段描述符装入TR,并设置演示任务的堆栈;(3)进入演示代码段,演示代码段的特权级是0;(4)通过任务门调用测试任务1。测试任务1能够顺利进行;(5)通过任务门调用测试任务2。测试任务2演示由于违反I/O许可位图规定而导致通用保护异常;(6)通过任务门调用测试任务3。测试任务3演示I/O敏感指令如何引起通用保护异常;(7)通过任务门调用测试任务4。测试任务4演示特权指令如何引起通用保护异常;(8)从演示代码转临时代码,准备返回实模式;(9)返回实模式,并作结束处理。

    标签: 汇编 保护模式 教程

    上传时间: 2013-12-11

    上传用户:nunnzhy

  • 以GMS97C2051单片机为核心

    以GMS97C2051单片机为核心,采用TLC2543 12位串行A/D转换器,设计了一个串行数据采集/传输模块,给出了主要源程序。

    标签: C2051 2051 GMS 97C

    上传时间: 2015-03-17

    上传用户:teddysha

  • 以GMS97C2051单片机为核心

    以GMS97C2051单片机为核心,采用TLC2543 12位串行A/D转换器,设计了一个串行数据采集/传输模块,给出了硬件原理图和主要源程序。

    标签: C2051 2051 GMS 97C

    上传时间: 2013-12-09

    上传用户:qq521

  • 经统计

    经统计,某机器14条指令的使用频度分别为:0.01,0.15,0.12,0.03,0.02,0.04,0.02,0.04,0.01,0.13,0.15,0.14,0.11,0.03。分别求出用等长码、Huffman码、只有两种码长的扩展操作码3种编码方式的操作码平均码长。 解: 等长操作码的平均码长=4位 Huffman编码的平均码长=3.38位 只有两种码长的扩展操作码的平均码长=3.4位。 9.若某机要求:三地址指令4条,单地址指令255条,零地址指令16条。设指令字长为12位.每个 地址码长为3位。问能否以扩展操作码为其编码?如果其中单地址指令为254条呢?说明其理由。 答:①不能用扩展码为其编码。 ∵指令字长12位,每个地址码占3位; ∴三地址指令最多是2^(12-3-3-3)=8条, 现三地址指令需4条, ∴可有4条编码作为扩展码, ∴单地址指令最多为4×2^3×2^3=2^8=256条, 现要求单地址指令255条,∴可有一条编码作扩展码 ∴零地址指令最多为1×2^3=8条 不满足题目要求 ∴不可能以扩展码为其编码。 ②若单地址指令254条,可以用扩展码为其编码。 ∵依据①中推导,单地址指令中可用2条编码作为扩展码 ∴零地址指令为2×2^3=16条,满足题目要求

    标签:

    上传时间: 2015-04-30

    上传用户:zhangyigenius

  • 以C2051单片机为核心

    以C2051单片机为核心,采用TLC2543 12位串行A/D转换器,设计了一个串行数据采集/传输模块,给出了硬件原理图和主要源程序

    标签: C2051 单片机 核心

    上传时间: 2015-06-29

    上传用户:1109003457

  • 常见的接口:1、并行接口(每一次传送一个字或字节的全部代码)INTEL 8255

    常见的接口:1、并行接口(每一次传送一个字或字节的全部代码)INTEL 8255,MC6820,Z80_PIO,传送的距离比较近。 2、串行接口:数据和控制信息是一位一位串行地传送下去,距离比较远,通常COM1使用是9针D形连接器,COM2使用是老式的DB25针连接器, 3、磁盘接口 (1)IDE接口,集成驱动器电子部件,不支持DMA数据传送,只使用标准的PCI/O端口指令来传送所有的命令,状态等 (2)EIDE接口, 4、SCSI接口。具有多任务接口,具有总线仲裁功能。按同步或异步方式传输数据,可分单端和差分传送方式,是智能化设备。 5、USB接口。

    标签: INTEL 8255 接口 并行接口

    上传时间: 2015-08-17

    上传用户:gtf1207

  • 为了节省PCB版面

    为了节省PCB版面,采用12位串行AD转换MCP3202,单片机采集

    标签: PCB 版面

    上传时间: 2015-09-20

    上传用户:lx9076

  • TLC2543c语言驱动

    TLC2543c语言驱动,网上12位串行的AD转换可以说是不少。不过合用的就不多了

    标签: 2543c 2543 TLC 语言

    上传时间: 2014-01-14

    上传用户:lz4v4