虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

伺服电机控制

  • PLC在永磁无刷直流电机伺服系统中的应用

    摘要:交流伺服技术是研发各种先进的机电一体化设备的关键技术,在此前提下,介绍了一种基于西门子S7—222PLC的永磁直流无刷电机伺服控制系统。该系统结合西门子6SC610型晶体管脉宽调制变频器与1FT5无刷伺服电机,位置环采用先进的伪微分反馈控制算法,对无刷电机进行速度和位置伺服控制,并在上位机中进行监控。试验结果表明,采用这种控制方案可以在低成本下使永磁直流无刷电机伺服系统取得良好的控制效果。关键词:伺服系统;无刷直流电机;可编程控制器;伪微分反馈控制

    标签: PLC 无刷直流电机 伺服系统 中的应用

    上传时间: 2014-01-10

    上传用户:恋天使569

  • 基于DSP的数字伺服机构控制系统设计

         为满足对直流无刷伺服机构的数字化控制,介绍了一种数字无刷直流电机伺服控制系统,以TMS320F2812型DSP为控制核心,包括中央处理电路,驱动电路,反馈电路等实现对直流无刷电机伺服系统的控制。该系统原理简单,易于实现,抗干扰能力强且控制精度高,控制效率好,已在某型伺服控制系统中广泛应用。  

    标签: DSP 数字 伺服机构 控制系统设计

    上传时间: 2013-11-14

    上传用户:王庆才

  • DSP伺服控制开发板原理图,有丰富的外围接口

    DSP伺服控制开发板原理图,有丰富的外围接口,可以用来控制伺服电机的工作,

    标签: DSP 伺服控制 开发板原理图 外围接口

    上传时间: 2015-09-16

    上传用户:cx111111

  • 伺服电机内部结构及其工作原理.

    一、交流伺服电动机交流伺服电动机定子的构造基本上与电容分相式单相异步电动机相似.其定子上装有两个位置互差90°的绕组,一个是励磁绕组Rf ,它始终接在交流电压Uf 上;另一个是控制绕组L,联接控制信号电压Uc 。所以交流伺服电动机又称两个伺服电动机。交流伺服电动机的转子通常做成鼠笼式, 但为了使伺服电动机具有较宽的调速范围、线性的机械特性, 无“自转”现象和快速响应的性能, 它与普通电动机相比,应具有转子电阻大和转动惯量小这两个特点。目前应用较多的转子结构有两种形式:一种是采用高电阻率的导电材料做成的高电阻率导条的鼠笼转子,为了减小转子的转动惯量,转子做得细长;另一种是采用铝合金制成的空心杯形转子,杯壁很薄,仅0.2-0.3mm ,为了减小磁路的磁阻,要在空心杯形转子内放置固定的内定子.空心杯形转子的转动惯量很小,反应迅速,而且运转平稳,因此被广泛采用。交流伺服电动机在没有控制电压时, 定子内只有励磁绕组产生的脉动磁场,转子静止不动。当有控制电压时,定子内便产生一个旋转磁场,转子沿旋转磁场的方向旋转,在负载恒定的情况下,电动机的转速随控制电压的大小而变化, 当控制电压的相位相反时, 伺服电动机将反转。交流伺服电动机的工作原理与分相式单相异步电动机虽然相似, 但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点:1、起动转矩大由于转子电阻大,其转矩特性曲线如图3 中曲线1 所示,与普通异步电动机的转矩特性曲线2 相比,有明显的区别。它可使临界转差率S0> 1,这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。2、运行范围较广3、无自转现象正常运转的伺服电动机,只要失去控制电压,电机立即停止运转。当伺服电动机失去控制电压后,它处于单相运行状态,由于转子电阻大,定子中两个相反方向旋转的旋转磁场与转子作用所产生的两个转矩特性( T1 - S1 、T2 - S2 曲线) 以及合成转矩特性( T- S 曲线)交流伺服电动机的输出功率一般是0.1-100W 。当电源频率为50Hz ,电压有36V 、110V 、220 、380V ;当电源频率为400Hz ,电压有20V 、26V 、36V 、115V 等多种。

    标签: 伺服电机

    上传时间: 2022-06-01

    上传用户:zhaiyawei

  • 三相交流伺服永磁同步电动机的设计研究.rar

    在国内,目前工控领域广泛用到的伺服系统(包括伺服电机和伺服驱动器)有整套购买国外某一个厂商的,也有自己开发电机,然后购买国外的伺服驱动器来配置伺服系统。前一种情况伺服电机与驱动器之间的整合程度是比较高,而后一种情况伺服电机的设计容易忽视与之配套的伺服驱动器的控制策略以及伺服驱动器的输出电压,输出电流特点,很容易造成所设计的伺服电机不能充分发挥其性能以及材料的不合理利用。本文讨论了作为伺服电机用的永磁同步电动机在整合伺服驱动器控制方式和输出电压、电流特性下的设计过程。 本文首先简要介绍了永磁同步电动机作为伺服电机较其他类型的电机的优势,接着以永磁同步电动机作为伺服电机,对给定指标要求的永磁同步电动机,在永磁体分别采用表面安装和内置两种转子磁路结构时进行了场路结合的设计与分析,分析了在磁场定向控制方式下两种转子磁路结构的永磁同步电动机的工作特性、转矩脉动等。得出了永磁体表面安装转子磁路结构的永磁同步电动机作为伺服电机时更适合磁场定向控制运行的结论。 此外,从已经成功设计了的永磁同步电动机出发,整合所设计的永磁同步电动机将要采用的驱动器其控制方式,并在一些有依据的假设前提下确定了电机的能量包函数(包括功率、转速等一些额定指标)与一些主要尺寸函数表达式。初步得出了一种行之有效的、快速确定使用同一套定转子冲片伺服电机尺寸的方法。 最后试制了样机以及其在伺服驱动器下进行了实验,并比较分析了实验和理论分析的结果。

    标签: 三相交流 伺服 永磁同步电动机

    上传时间: 2013-05-30

    上传用户:heminhao

  • 基于ARM微处理器的电液位置伺服控制系统的研究

    电液位置伺服系统具有控制精度高、响应速度快、输出功率大、信号处理灵活、易于实现各种参量反馈等优点,因此它已经遍及国民经济和军事工业的各个技术领域。近年来,对电液位置伺服系统的快速性、稳定性、准确性等控制性能提出了新的要求,作为电液位置伺服系统核心的控制器,起到更为关键的作用。 现阶段,嵌入式微处理器以其小型、专用、便携、高可靠的特点,已经在工业控制领域得到了广泛的应用,如工业过程、远程监控、智能仪器仪表、机器人控制、数控系统等,嵌入式微处理器嵌入实时操作系统,可以克服传统的基于单片机控制系统功能不足和基于PC的控制系统非实时性的缺点,其性能、可靠性等都能满足电液位置伺服系统控制的要求,在控制领域具有广泛的应用前景。 本文以实验室的电液位置伺服系统为研究对象,按照系统的控制要求,提出以ARM9(S3C2410)微处理器为核心的控制器对电液位置伺服系统进行控制的一种方案,设计了一种新型的基于ARM9(S3C2410)微处理器的电液位置伺服控制器。本系统控制器的开发设计中,在以ARM9(S3C2410)微处理器为核心的控制器基础上,通过外部扩展,使得系统控制器具有丰富的硬件资源,开发了A/D转换电路、D/A(PWM)转换电路、伺服放大电路、串行接口等电路,同时为了使得控制器的程序代码具有较强的可读性、可维护性、可扩展性,使用了操作系统,通过比较选择了uC/OS-Ⅱ实时内核,并成功移植到ARM9(S3C2410)微处理器中,并编写了A/D、数字滤波、D/A(PWM)等软件程序,通过编译、调试、验证,程序运行正常。在对电液位置伺服系统进行控制策略的选择中,分别采用PID、滑模变结构、模糊自学习滑模三种控制策略进行仿真比较,得出采用模糊自学习滑模控制策略更有利于系统控制。

    标签: ARM 微处理器 伺服控制系统 电液位置

    上传时间: 2013-04-24

    上传用户:sssnaxie

  • 基于DSP和IRMCK201的双CPU交流位置伺服系统.pdf

    由于永磁伺服电机具有转子转动惯量 小,响应速度快,效率高,功率密度高,电机体积小,消除电刷而减少噪音和维护等其他电机难以比拟的优点,在高性能位置伺服领域,尤其为伺服电机组成的伺服系统应用越来越广泛。 永磁无刷电机有两种形式:方波式和正弦波式。本文主要研究以pmsm 为伺服电机的伺服系统 目前实现永磁同步电动机的控制主要采用dsp、dsp+fpga和dsp+asic三种途径。而前两种方式实现位置控制编程量较大,美国国际整流器公司针对高性能交流伺服驱动要求,基于fpga技术开发出了完整的闭环电流控制和速度控制的伺服系统单片解决方案—irmck201。本文就是基于这种数字运动控制芯片,设计了dsp和irmck201的交流伺服控制系统。该系统具有性能优越,结构简单,编程任务小,开发周期短等优点,对其他交流位置伺服控制系统也具有很好的推广意义。

    标签: IRMCK DSP 201 CPU

    上传时间: 2013-06-07

    上传用户:zgu489

  • 全数字伺服系统中死区效应的补偿方法.pdf

    目前,在伺服控制系统中,通常采用三相电压型逆变器来驱动伺服电机。桥式电路中为避免同一桥臂开关器件的直通现象, 必须插入死区时间。死区时间和开关器件的非理想特性往往会造成输出电压、电流的畸变,从而造成电机转矩的脉动,影响系统工作性能。因此,必须对电压型逆变器中的死区效应进行补偿。

    标签: 全数字 伺服系统 死区

    上传时间: 2013-04-24

    上传用户:萌萌哒小森森

  • 永磁同步伺服电机(PMSM) 驱动器设计原理

    ·永磁交流伺服系统的驱动器经历了模拟式、模拟数字混合式的发展后,目前已经进入了全数字的时代。全数字伺服驱动器不仅克服了模拟式伺服的分散性大、零漂、低可靠性等缺点,还充分发挥了数字控制在控制精度上的优势和控制方法的灵活,使伺服驱动器不仅结构简单,而且性能更加可靠。现在,高性能的伺服系统大多数采用永磁交流伺服系统,其中包括永磁同步交流伺服电动机和全数字交流永磁同步伺服驱动器两部分。后者由两部分组成:驱动

    标签: PMSM nbsp 永磁同步 伺服电机

    上传时间: 2013-04-24

    上传用户:zhangyi99104144

  • 伺服与变频的异同

    伺服与变频:伺服与变频的一个重要区别是: 变频可以无编码器,伺服则必须有编码器,作电子换向用. 一、两者的共同点:     交流伺服的技术本身就是借鉴并应用了变频的技术,在直流电机的伺服控制的基础上通过变频的PWM方式模仿直流电机的控制方式来实现的,也就是说交流伺服电 机必然有变频的这一环节:变频就是将工频的50、60HZ的交流电先整流成直流电,然后通过可控制门极的各类晶体管(IGBT,IGCT等)通过载波频率 和PWM调节逆变为频率可调的波形类似于正余弦的脉动电,由于频率可调,所以交流电机的速度就可调了(n=60f/2p ,n转速,f频率, p极对数)   二、谈谈变频器:    简单的变频器只能调节交流电机的速度,这时可以开环也可以闭环要视控制方式和变频器而定,这就是传统意义上的V/F控制方式。现在很多的变频已经通过数学 模型的建立,将交流电机的定子磁场UVW3相转化为可以控制电机转速和转矩的两个电流的分量,现在大多数能进行力矩控制的著名品牌的变频器都是采用这样方 式控制力矩,UVW每相的输出要加摩尔效应的电流检测装置,采样反馈后构成闭环负反馈的电流环的PID调节;ABB的变频又提出和这样方式不同的直接转矩 控制技术,具体请查阅有关资料。这样可以既控制电机的速度也可控制电机的力矩,而且速度的控制精度优于v/f控制,编码器反馈也可加可不加,加的时候控制 精度和响应特性要好很多。 三、谈谈伺服:   驱动器方面:伺服驱动器在发展了变频技术的前提下,在驱动器内部的电流环,速度环和位置 环(变频器没有该环)都进行了比一般变频更精确的控制技术和算法运算,在功能上也比传统的伺服强大很多,主要的一点可以进行精确的位置控制。通过上位控制 器发送的脉冲序列来控制速度和位置(当然也有些伺服内部集成了控制单元或通过总线通讯的方式直接将位置和速度等参数设定在驱动器里),驱动器内部的算法和 更快更精确的计算以及性能更优良的电子器件使之更优越于变频器。   电机方面:伺服电机的材料、结构和加工工艺要远远高于变频器驱动的交流电机 (一般交流电机或恒力矩、恒功率等各类变频电机),也就是说当驱动器输出电流、电压、频率变化很快的电源时,伺服电机就能根据电源变化产生响应的动作变 化,响应特性和抗过载能力远远高于变频器驱动的交流电机,电机方面的严重差异也是两者性能不同的根本。就是说不是变频器输出不了变化那么快的电源信号,而 是电机本身就反应不了,所以在变频的内部算法设定时为了保护电机做了相应的过载设定。当然即使不设定变频器的输出能力还是有限的,有些性能优良的变频器就 可以直接驱动伺服电机!!! 四、谈谈交流电机:   交流电机一般分为同步和异步电机   1、交流同步电机:就是转子是由永磁材料构成,所以转动后,随着电机的定子旋转磁场的变化,转子也做响应频率的速度变化,而且转子速度=定子速度,所以称"同步"。    2、交流异步电机:转子由感应线圈和材料构成。转动后,定子产生旋转磁场,磁场切割定子的感应线圈,转子线圈产生感应电流,进而转子产生感应磁场,感应 磁场追随定子旋转磁场的变化,但转子的磁场变化永远小于定子的变化,一旦等于就没有变化的磁场切割转子的感应线圈,转子线圈中也就没有了感应电流,转子磁 场消失,转子失速又与定子产生速度差又重新获得感应电流。。。所以在交流异步电机里有个关键的参数是转差率就是转子与定子的速度差的比率。   3、对应交流同步和异步电机变频器就有相映的同步变频器和异步变频器,伺服电机也有交流同步伺服和交流异步伺服,当然变频器里交流异步变频常见,伺服则交流同步伺服常见。  

    标签: 伺服

    上传时间: 2013-11-17

    上传用户:maqianfeng