虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

人脸识别

人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部识别的一系列相关技术,通常也叫做人像识别、面部识别。
  • 人耳识别技术是20世纪90年代末开始兴起的一种生物特征识别技术

    人耳识别技术是20世纪90年代末开始兴起的一种生物特征识别技术,与其它生物特征识别技术比较具有以下几个特点:(1)与人脸识别方法比较,耳识别方法不受面部表情、化妆品和胡须变化的影响,同时保留了面部识别图象采集方便的优点,与人脸相比,整个人耳的颜色更加一致、图像尺寸更小,数据处理量也更小。(2)与指纹识别方法比较,耳图象的获取是一种被动方式,即通过非接触方式获取耳图像,不存在通过接触传染疾病的机会,因此,其信息获取方式具有容易被人接受的优点。(3)与虹膜识别方法比较,首先,由于人脸和头发的存在,需要在耳识别过程中增加一个耳区域定位步骤,这并不影响耳特征的提取,而眼毛对虹膜的遮挡将直接影响虹膜特征的提取。头发对于耳的遮挡可以容易地避免,而眼毛对于虹膜的遮挡是生理结构决定的,也是难以避免的。其次,就目前的技术而言,虹膜采集需要测试者与采集装置之间的位置在机器发出的语言提示下进行不断地调整,同时要瞪大眼睛,使虹膜尽可能暴露,初试者通常要反复多次调整才能够达到要求,而耳采集方式与脸采集方式基本相同,测试者很容易达到拍摄图象的要求条件。最后,虹膜采集装置的成本要高于耳采集装置。

    标签: 人耳识别 生物特征识别

    上传时间: 2013-12-20

    上传用户:坏坏的华仔

  • 本书是清华大学自动化教材,主要讨论统计模式识别理论和方法,包括了贝叶斯决策理论、线性和非线性判别函数、近邻规则、经验风险最小化、特征提取和选择、聚类分析、人工神经网络、模糊模式识别、模拟退火和遗传算法

    本书是清华大学自动化教材,主要讨论统计模式识别理论和方法,包括了贝叶斯决策理论、线性和非线性判别函数、近邻规则、经验风险最小化、特征提取和选择、聚类分析、人工神经网络、模糊模式识别、模拟退火和遗传算法,以及统计学习理论和支持向量机等内容,还介绍了模式识别在人脸识别、说话人语音识别及字符识别等中的应用实例。

    标签: 清华大学 教材 判别 函数

    上传时间: 2014-01-04

    上传用户:qw12

  • ORL人脸库

    ORL人脸库,可以用于人脸识别和人脸检测!

    标签: ORL 人脸

    上传时间: 2016-02-29

    上传用户:561596

  • 通过人脸图像归一化

    通过人脸图像归一化,人脸检测,特征提取等处理后,实现人脸识别功能

    标签: 人脸图像

    上传时间: 2013-11-29

    上传用户:zgu489

  • matlab实现人脸检测

    matlab实现人脸检测,基于PCA实现,可以实现人脸识别

    标签: matlab 人脸检测

    上传时间: 2017-09-15

    上传用户:change0329

  • 面部识别程序

    简单的面部识别程序,用于进行人脸识别,通过颜色标示出来

    标签: 识别

    上传时间: 2015-06-05

    上传用户:LuckYY

  • 人脸识别程序

    输入一张图片自动定位出人脸,准确的定位人脸,根据肤色确定人脸

    标签: MATLAB

    上传时间: 2015-07-15

    上传用户:Leerax

  • 人脸识别技术

    人脸训练opencv 利用自己带的训练器 利用正负样本训练自己的训练器

    标签: opencv

    上传时间: 2016-02-04

    上传用户:951515

  • 特征脸数据库,ORL人脸库

    ORL人脸库(Olivetti Research Laboratory人脸数据库),诞生于英国剑桥Olivetti实验室。ORL人脸数据库由该实验室从1992年4月到1994年4月期间拍摄的一系列人脸图像组成,共有40个不同年龄、不同性别和不同种族的对象。每个人10幅图像共计400幅灰度图像组成,图像尺寸是92×112,图像背景为黑色。其中人脸部分表情和细节均有变化,例如笑与不笑、眼睛睁着或闭着,戴或不戴眼镜等,人脸姿态也有变化,其深度旋转和平面旋转可达20度,人脸尺寸也有最多10%的变化。该库是目前使用最广泛的标准人脸数据库,特别是刚从事人脸识别研究的学生和初学者,研究ORL人脸库是个很好的开始。

    标签: 数据库

    上传时间: 2022-07-23

    上传用户:qingfengchizhu

  • 基于OpenCV的计算机视觉技术实现.rar

    OpencV是用来实现计算机视觉相关技术的开放源码工作库,是计算机视觉、图像处理、模式识别、计算机图形学、信号处理、视频监控、科学可视化等相关从业人员的好工具。本书介绍了大约200多个典型的技术问题,覆盖了基于OpenCV基础编程的主要内容,利用大量生动有趣的编程案例和编程技巧,从解决问题和答疑解惑入手,以因特网上最新资料为蓝本,深入浅出地说明了OpenCV中最典型和用途最广的程序设计方法。全书结构清晰、合理,范例实用、丰富,理论结合实践,即使读者只是略懂计算机视觉原理,也能人手对相关理论方法直接进行编码实现。 "基于OPENCV的计算机视觉技术实现"的图书目录…… 前言 第一章 使用OpenCV实现计算机视觉技术 1.1 计算机视觉技术 1.2 什么是OpenCV 1.3 基于OpenCV库的编程方法 本章小结 第二章 OpenCV的编程环境 2.1 OpenCV环境介绍 2.2 OpenCV的体系结构 2.3 OpenCV实例演示 本章小结 第三章 OpenCV编程风格 3.1 命名约定 3.2 结构 3.3 函数接口设计 3.4 函数实现 3.5 代码布局 3.6 移植性 3.7 文件操作 3.8 文档编写 本章小结 第四章 数据结构 4.1 基本数据结构 4.2 数组有关的操作 4.3 动态结构 本章小结 第五章 数据交互 5.1 绘图函数 5.2 文件存储 5.3 运行时类型信息和通用函数 5.4 错误处理函数 5.5 系统函数 本章小结 第六章 图像处理 6.1 边缘检测 6.2 直方图 6.3 Hough变换 6.4 几何变换 6.5 形态学 本章小结 第七章 结构与识别 7.1 轮廓处理函数 7.2 计算几何 7.3 平面划分 7.4 目标检测函数 7.5 生成与控制贝塞尔曲线 7.6 用OpenCV进行人脸检测 本章小结 第八章 图形界面(HighGUI) 8.1 读取和保存图像 8.2 OpenCV中的实用系统函数 本章小结 第九章 视频处理(CvCAM) 9.1 使用HighGUI对视频进行读写处理 9.2 CvCam对摄像头和视频流的使用 本章小结 第十章 OpenCV附加库第一部分 10.1 附加库介绍 10.2 形态学(morhing functions) 本章小结 第十一章 OpenCV附加库第二部分——隐马尔可夫模型 11.1 隐马尔可夫模型概述 11.2 隐马尔可夫模型中的基本结构与函数介绍 11.3 隐马尔可夫模型中的函数介绍 11.4 人脸识别工具 本章小结 第十二章 核心库综合例程 12.1 检测黑白格标定板内指定矩形区域内的角点 12.2 解线性标定方程组程序 本章小结 第十三章 运动与跟踪 13.1 图像统计的累积函数 13.2 运动模板函数 13.3 对象跟踪 13.4 光流 13.5 预估器 13.6 Kalman滤波器跟踪示例 13.7 用Snake方法检测可变形体的轮廓 13.8 运动目标跟踪与检测 本章小结 第十四章 立体视觉第一部分——照相机定标 14.1 坐标系介绍 14.2 透视投影矩阵的获得 14.3 摄像机参数的获取 14.4 径向畸变的校正 14.5 使用OpenCV及CVUT进行摄像机定标 14.6 OpenCV中的定标函数 14.7 CVUT介绍 本章小结 第十五章 立体视觉第二部分——三维重建 15.1 极线几何 15.2 特征点匹配 15.3 三维重建 15.4 OpenCV中相关函数介绍 本章小结 第十六章 立体视觉第三部分——三维重建算法 16.1 图像校正 16.2 已校正图像的快速三维重建 16.3 Birchfield算法 16.4 OpenCV中相关函数介绍 本章小结 第十七章 立体视觉第四部分——立体视觉实例 17.1 图像校正实例代码 17.2 基于窗口的稀疏点匹配及三维重建之一 17.3 基于窗口的稀疏点匹配及三维重建之二 17.4 Birchfield算法的OpenCV实现 本章小结 第十八章 常见问题解疑 18.1 安装与编译出错解决方法 18.2 OpenCV库基本技术问题 18.3 OpenCV在Linux下的相关问题 18.4 OpenCV库中的陷阱和bug

    标签: OpenCV 计算机视觉 技术实现

    上传时间: 2013-07-18

    上传用户:huyiming139