虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

二值化

  • 主变压器差动保护误动作的处理

    对差动保护进行相关检查、试验如下: 1、检查BCH-2型差动继电器与定值单相符,对差动继电器进行检查、检验合格。 2、检查差动保护二次回路接线正确,二次回路绝缘符合规程要求。 3、35kV开关为DW2-35型,检查油箱内电流互感器为差动保护专用LRD型,变比为75/5,核对变比、极性正确;6kV电流互感器为LAJ-10 300/5,差动接在D级绕组上,核对变比、极性正确。 4、对差动保护按定值单传动,各继电器动作正确。 以上各项目正常,说明一、二次设备无缺陷,二次接线无错误,便恢复主变送电,送电后进行差动保护向量和差压检测正常

    标签: 主变压器 差动保护 动作

    上传时间: 2013-10-08

    上传用户:小码农lz

  • 德国J.P系列防雷产品行业解决方案--通信开关电源

    概述:近年来,通信开关电源遭雷害事故时有发生。大家感到,不但损坏次数在显著增多,而且每次的损坏程度也很严重。作为通信系统的“心脏”,通信电源在自身损坏的同时,对其负载侧通信设备将构成威胁,若不及时抢修,很容易引发二次事故,甚至出现通信中断等严重后果。随着大量无人值守站的建设,这类问题显得更加突出。因此,如何做好通信开关电源的雷电过电压保护,是摆在众多设备制造厂家面前的一个很紧迫的问题。通信开关电源主要由交流配电、高频整流、直流配电和本机监控共4个单元组成,其基本功能是向交换、传输、微波或移动等通信设备提供安全可靠的直流基础电源。通信开关电源的直流输出电压的标称值主要有48V和24V两种,额定电流从几十安到几千安不等,主要取决于通信负载的功率和蓄电池组的容量。通信开关电源内部含有大量的耐受能力更低的先进电子元器件如集成电路、二极管和三极管等,它们极大地降低了通信开关电源承受雷电过电压的能力。

    标签: J.P 防雷 方案 通信开关

    上传时间: 2013-11-07

    上传用户:lo25643

  • 瞬时值电流控制逆变技术比较

    电流瞬时值控制逆变器有多种实现方案.本文从系统稳定性、外特性以及负载适应能力等方面对电感电流反馈滞环电流控制,固定开关频率电感电流反馈控制和电容电流反馈控制进行了对比分析,以综合评估各种控制方案的性能,为方案选择提供依据。理论分析和实验结果表明,在系统稳定条件略为苛刻的情况下,采用固定开关频率的电容电流反馈控制的逆变器具有很好的输出电压波形、很硬的外特性以及良好的非线性负载适应性.是一种较好的电流瞬时值控制技术。

    标签: 瞬时值 电流控制 比较 逆变技术

    上传时间: 2013-11-19

    上传用户:liangliang123

  • 漏电保护器的工作原理、使用范围、接线方式

    漏电保护器的工作原理:漏电保护器主要包括检测元件(零序电流互感器)、中间环节(包括放大器、比较器、脱扣器等)、执行元件(主开关)以及试验元件等几个部分。三相四线制供电系统的漏电保护器工作原理示意图。TA 为零序电流互感器,GF 为主开关,TL为主开关的分励脱扣器线圈。在被保护电路工作正常,没有发生漏电或触电的情况下,由克希荷夫定律可知,通过TA 一次侧的电流相量和等于零,即:这样TA 的二次侧不产生感应电动势,漏电保护器不动作,系统保持正常供电。当被保护电路发生漏电或有人触电时,由于漏电电流的存在,通过TA一次侧各相电流的相量和不再等于零,产生了漏电电流Ik。在铁心中出现了交变磁通。在交变磁通作用下,TL二次侧线圈就有感应电动势产生,此漏电信号经中间环节进行处理和比较,当达到预定值时,使主开关分励脱扣器线圈TL 通电,驱动主开关GF 自动跳闸,切断故障电路,从而实现保护。用于单相回路及三相三线制的漏电保护器的工作原理与此相同,不赘述。

    标签: 漏电保护器 工作原理 接线方式

    上传时间: 2013-10-19

    上传用户:zhangjinzj

  • 彩显二次电源原理

    为了让彩显在不同行频扫描时,画面清晰稳定,通常采用二次电源方法为行输出级供电,即将主电源产生的电压变换为随行频升高而升高的可变电压,以满足多频扫描的需要。另外,在一些性能较高的彩显中还采用了高压独立供电的方式,将行频变化对画面的影响降至最低。

    标签: 彩显 二次电源

    上传时间: 2013-11-21

    上传用户:gut1234567

  • Flyback变换器各主要器件设计推算

    一、变压器Np、Ns、Lp的计算二、如果要计算气隙长度Lg三、开关管Vce、Ic的计算(非连续)五.输出整流二极管Id、Vd的计算Flyback输出滤波电容设计流过输出电容C的纹波电流Ic=I2- Io   其中:I2为次级线圈电流   Ic的有效值可由下式计算:Icrms=[Ton/3T(I2p^2-I2pIo+Io^2 )+(Toff/T)*           Io^2]^1/2          其中I2p=2io/(1- δmax)   此为输入电压最低、输出功率最大时状态。

    标签: Flyback 变换器 器件设计

    上传时间: 2013-11-22

    上传用户:aesuser

  • 8阶开关电容滤波器MAX29X系列的应用设计

    MAX29X是美国MAXIM公司生瓣的8阶开关电容低通滤波器,由于价格便宜、使用方便、设计简单,在通讯、信号自理等领域得到了广泛的应用。本文就其工作原理、电气参数、设计注意事项等问题作了讨论,具有一定的实用参考价值。关键词:开关电容、滤波器、设计 1 引言     开关电容滤波器在近些年得到了迅速的发展,世界上一些知名的半导体厂家相继推出了自己的开头电容滤波器集成电路,使形状电容滤波器的发展上了一个新台阶。     MAXIM公司在模拟器件生产领域颇具影响,它生产MAX291/292/293/294/295/296/297系列8阶低通开关电容滤波器由于使用方便(基本上不需外接元件)、设计简单(频率响应函数是固定的,只需确定其拐角频率即截止频率)、尺寸小(有8-pin    DIP封装)等优点,在ADC的反混叠滤波、噪声分析、电源噪声抑制等领域得到了广泛的应用。     MAX219/295为巴特活思(型滤波器,在通频带内,它的增益最稳定,波动小,主要用于仪表测量等要求整个通频带内增益恒定的场合。MAX292/296为贝塞尔(Bessel)滤波器,在通频带内它的群时延时恒定的,相位对频率呈线性关系,因此脉冲信号通过MAX292/296之后尖峰幅度小,稳定速度快。由于脉冲信号通过贝塞尔滤波器之后所有频率分量的延迟时间是相同的,故可保证波形基本不变。关于巴特活和贝塞尔滤波器的特性可能图1来说明。图1的踪迹A为加到滤波器输入端的3kHz的脉冲,这里我们把滤波器的截止频率设为10kHZ。踪迹B通过MAX292/296后的波形。从图中可以看出,由于MAX292/296在通带内具有线性相位特性,输出波形基本上保持了方波形状,只是边沿处变圆了一些。方波通过MAX291/295之后,由于不同频率的信号产生的时延不同,输出波形中就出现了尖峰(overshoot)和铃流(ringing)。     MAX293/294/297为8阶圆型(Elliptic)滤波器,它的滚降速度快,从通频带到阻带的过渡带可以作得很窄。在椭圆型滤波器中,第一个传输零点后输出将随频率的变高而增大,直到第二个零点处。这样几番重复就使阻事宾频响呈现波浪形,如图2所示。阻带从fS起算起,高于频率fS处的增益不会超过fS处的增益。在椭圆型滤波中,通频带内的增益存在一定范围的波动。椭圆型滤波器的一个重要参数就是过渡比。过渡比定义为阻带频率fS与拐角频率(有时也等同为截止频率)由时钟频率确定。时钟既可以是外接的时钟,也可以是自己的内部时钟。使用内部时钟时只需外接一个定时用的电容既可。     在MAX29X系列滤波器集成电路中,除了滤波器电路外还有一个独立的运算放大器(其反相输入端已在内部接地)。用这个运算放大器可以组成配合MAX29X系列滤波器使用后的滤波、反混滤波等连续时间低通滤波器。     下面归纳一下它们的特点:     ●全部为8阶低通滤波器。MAX291/MAX295为巴特沃思滤波器;MAX292/296为贝塞尔滤波器;MAX293/294/297为椭圆滤波器。     ●通过调整时钟,截止频率的调整范围为:0.1Hz~25kHz(MAX291/292/293*294);0.1Hz~kHz(MAX295/296/297)。     ●既可用外部时钟也可用内部时钟作为截止频率的控制时钟。     ●时钟频率和截止频率的比率:10∶1(MAX291/292/293/294);50∶1(MAX295/296/297)。     ●既可用单+5V电源供电也可用±5V双电源供电。     ●有一个独立的运算放大器可用于其它应用目的。     ●8-pin DIP、8-pin SO和宽SO-16多种封装。2 管脚排列和主要电气参数     MAX29X系列开头电容滤波器的管脚排列如图3所示。     管脚功能定义如下:     CLK:时钟输入。     OP OUT:独立运放的输出端。     OP INT:独立运放的同相输入端。     OUT:滤波器输出。     IN:滤波器输入。     V-:负电源 。双电源供电时搛-2.375~-5.5V之间的电压,单电源供电时V--=-V。     V+:正电源。双电源供电时V+=+2.35~+5.5V,单电源供电时V+=+4.75~+11.0V。     GND:地线。单电源工作时GND端必须用电源电压的一半作偏置电压。     NC:空脚,无连线。     MAX29X的极限电气参数如下:     电源(V+~V-):12V     输入电压(任意脚):V--0.3V≤VIN≤V++0.3V     连续工作时的功耗:8脚塑封DIP:727mW;8脚SO:471mW;16脚宽SO:762mW;8脚瓷封DIP:640mW。     工作温度范围:MAX29-C-:0℃~+70℃;MAX29-E-:-40℃~+85℃;MAX29-MJA:-55℃~+125℃;保存温度范围:-65℃~+160℃;焊接温度(10秒):+300℃;     大多数的形状电容滤波器都采用四节级连结构,每一节包含两个滤波器极点。这种方法的特点就是易于设计。但采用这种方法设计出来的滤波器的特性对所用元件的元件值偏差很敏感。基于以上考虑,MAX29X系列用带有相加和比例功能的开关电容持了梯形无源滤波器,这种方法保持了梯形无源滤波器的优点,在这种结构中每个元件的影响作用是对于整个频率响应曲线的,某元件值的误差将会分散到所有的极点,因此不值像四节级连结构那样对某一个极点特别明显的影响。3 MAX29X的频率特性     MAX29X的频率特性如图4所示。图中的fs都假定为1kHz。4 设计考虑     下面对MAX29X系列形状电容滤波器的使用做些讨论。4.1 时钟信号     MAX29X系列开头电容滤波器推荐使用的时钟信号最高频率为2.5MHz。根据对应的时钟频率和拐角频率的比值,MAX291/MAX292/MAX293/MAX294的拐角频率最高为25kHz.MAX295/MAX296/MAX297的拐角频率最高为50kHz 。     MAX29X系列开关电容滤波器的时钟信号既可幅外部时钟直接驱动也可由内部振荡器产生。使用外部时钟时,无论是采用单电源供电还是双电源供电,CLK可直接和采用+5V供电的CMOS时钟信号发生器的输出相连。通过调整外部时钟的频率,可完成滤波器拐角的实时调整。     当使用内部时钟时,振荡器的频率由接在CLK端上的电容VCOSC决定:     fCOSC (kHz)=105/3COSC (pF) 4.2 供电     MAX29X系列开关电容滤波器既可用单电源工作也可用双电源工作。双电源供电时的电源电压范围为±2.375~±5.5V。在实际电路中一般要在正负电源和GND之间接一旁路电容。     当采用单电源供电时,V-端接地,而GND端要通过电阻分压获得一个电压参考,该电压参考的电压值为1/2的电源电压,参见图5。4.3 输入信号幅度范围限制     MAX29X允许的输入信号的最大范围为V--0.3V~V++0.3V。一般情况下在+5V单电源供电时输入信号范围取1V~4V,±5V双电源供电时,输入信号幅度范围取±4V。如果输入信号超过此范围,总谐波失真THD和噪声就大大增加;同样如果输入信号幅度过小(VP-P<1V),也会造成THD和噪声的增加。4.4 独立运算放大器的用法     MAX29X中都设计有一个独立的运算放大器,这个放大器和滤波器的实现无直接关系,用这个放大器可组成一个一阶和二阶滤波器,用于实现MAX29X之前的反混叠滤波功能鄞MAX29X之后的时钟噪声抑制功能。这个运算放大器的反相端已在内部和GND相连。     图6是用该独立运放组成的2阶低通滤波器的电路,它的拐角频率为10kHz,输入阻抗为22Ω,可满足MAX29X形状电容滤波器的最小负载要求(MAX29X的输出负载要求不小于20kΩ)可以通过改变R1、R2、R3、C1、C2的元件值改变拐角频率。具体的元件值和拐角频率的对应关系参见表1。

    标签: 29X MAX 29 8阶

    上传时间: 2013-10-18

    上传用户:macarco

  • 基于51单片机的智能温度报警模块化编程

    温度报警模块化,基于51单片机的智能温度报警模块化编程,适合初学者

    标签: 51单片机 智能温度 报警 模块化编程

    上传时间: 2013-10-12

    上传用户:小眼睛LSL

  • 用模块化的思想来武装你的keil编程(二)

    上一节,仔细的把怎么建立一个好的工程模板说了一下,可以说是一个好的

    标签: keil 模块化 编程

    上传时间: 2013-11-25

    上传用户:shawvi

  • 用模块化的思想来武装你的keil编程(一)

    采用模块化的编程方法,可以把相对复杂的软件系统分成功能相对独立的各个模块,这

    标签: keil 模块化 编程

    上传时间: 2013-10-20

    上传用户:suicoe