异步起动永磁同步电动机有别于调速永磁同步电动机,转子上设有起动绕组,具有在某一频率和电压下的自行起动能力,同传统的三相感应电动机相比,具有在宽负载范围内效率高、功率因数高的优点,符合国家“节能环保”的指导方向,有广泛的应用前景。 这种电机自问世以来,就受到普遍关注与重视,经过二十几年的研究与发展,三相异步起动永磁同步电动机的设计技术逐渐成熟,并且已经开始被用于某些工业场合,但由于转子磁路结构相对复杂,电动机的优化设计方法尚不完善,因而一直以来未得到大范围内的推广和应用。 本课题以此为切入点,以小功率三相异步起动永磁同步电动机的批量生产为目标,本着转子结构尽可能简单、加工工艺尽可能简化、同时电机性能尽可能提高的原则,对异步起动永磁同步电动机的优化设计方法进行研究。在研究过程中,作者应用Maxwell、Magneforce和Magnet等电机设计仿真软件,系统分析了永磁体的嵌放深度、定转子的齿槽配合、以及定转子的磁路饱和等问题对电机性能的影响,最终设计并制成一台容量为1.1kW的四极径向磁路式异步起动永磁同步电动机,样机的性能测试实验结果与仿真所得结果吻合,成本预算与各方面性能指标均满足设计需求。 在样机制成后,作者进一步对样机的设计进行了优化,实验结果证明所设计异步起动永磁同步电动机完全可以替代同规格的1.1kW,Y90S-4感应电动机。
上传时间: 2013-07-31
上传用户:坏坏的华仔
步进电动机是工业控制中常用的一种电机,其最大的优点是可以进行开环控制,无需位置和速度传感器,并且具有很高的精度,因而在办公设备和数控系统中获得了广泛的应用。混合式步进电机综合了反应式和永磁式步进电机的优点,具有很高的效率和运行精度,性能优异,是本文的研究对象。然而,采用传统控制方法进行开环控制的步进电机,运行噪声大、易振动,严重时将导致失步。 实践证明,细分控制可以有效的减小步进电机运行中的振动和噪声,增加电机运行的平稳性。由于混合式步进电机的运行原理类似于同步电机,因而可以借鉴同步电机先进的控制方法来控制混合式步进电机。本文将同步电机常用的矢量控制应用到混合式步进电机控制中,实现了混合式步进电动机步距角的任意细分控制,取得了良好的效果。 文章分析了三相混合式步进电动机的工作原理,在忽略一些非线性因素的前提下,建立了三相混合式步进电机理想的数学模型,并根据数学模型提出了相应的控制方案。 以数字信号处理器TMS320LF2403A为核心,设计了三相混合式步进电机驱动器的硬件和软件。数字PI调节器和空间矢量PWM技术是本控制系统的核心,文中详细介绍了PI调节器和空间矢量PWM的原理及数字化实现。 最后介绍了系统的实验装置。实验结果证实了控制方案的可行性,也表明了本课题设计的控制器具有优良的性能。
上传时间: 2013-08-05
上传用户:wengtianzhu
SPWM三相交流电机程序.rarSPWM三相交流电机程序.rar
上传时间: 2013-06-02
上传用户:stampede
随着电力电子技术的飞速发展,越来越多的电力电子装置被应用到各个领域,给电网注入了不可忽视的无功以及谐波电流。 本文首先介绍了谐波的概念和谐波的危害,阐述了谐波问题研究的必要性和紧迫性,并对谐波抑制的方法作了简单的介绍。并在此基础上,通过对有源滤波器和无源滤波器各自的优缺点以及有源滤波器装置的结构、原理的分析,提出了基于DSP控制器的三相三线制并联型有源电力滤波器装置的设计方案。 并联有源电力滤波器主电路设计是核心环节之一。本文在三相三线并联型有源电力滤波器数学模型的基础上,通过对采用空间矢量调制的有源电力滤波器的工作过程的研究和分析,揭示了主电路各参数之间的相互关系。根据瞬态电流跟踪指标的要求推导出并联APF输出电感的估算公式。基于对电流跟踪误差矢量的度量,推导出直流侧电容电压临界值表达式。详细介绍了输出滤波器参数的设计方法。 实时、高精度的谐波检测是有源电力滤波器的重要部分。本文详细地介绍了瞬时无功功率理论,选择检测负载电流的方式以提取谐波。提出了用滑窗迭代作为低通滤波的数字算法,以快速分离负载电流中的基波分量得到谐波指令。以全数字控制为重点,对电流环的数字控制方式,包括数字PI调节器的设计做出了比较详细的分析。 本文用MATLAB/SIMULINK中的电力系统模块对有源电力滤波器进行了动态仿真研究。仿真结果表明这种拓扑结构的有源电力滤波器对电力系统中的谐波抑制具有较好的效果。 在理论分析和仿真研究的基础上,设计了基于TMS320LF2407A控制的并联型电力有源滤波器,对其控制系统硬件构成进行了详细的介绍。研制了实验样机,对并联型电力有源滤波器进行了初步的实验研究。
上传时间: 2013-04-24
上传用户:shiny3333
随着市场经济和现代化工业的发展,能源短缺和环境污染,已经成为制约人类社会健康发展的两大重要因素。新能源的开发与利用愈来愈受到重视,太阳能以其清洁环保、蕴藏丰富等优点逐步得到了开发利用。光伏逆变电源作为太阳能利用中主要的能量变换装置,是目前研究和发展的重要环节。 本课题研究的是可并网三相光伏逆变电源,以追求体积小、效率高、精度大、方便实用为目的,采用了DC—HFAC—DC—LFAC三级功率传输架构,设计中使用了SPWM技术、SVPWM技术、内高频环技术、DSP数字控制技术和数字锁相环技术等前沿实用技术。 直流DC—DC变换器采用内高频环技术,既实现了电气隔离又大大的减小了装置体积。这一部分本文不做涉及,本文所涉及的内容为本系统的DC—AC逆变电源部分,本论文的主要内容如下: 首先,分析了几种DC—AC逆变器的主电路拓扑结构,根据其优缺点与实际应用需要,选择三相四桥臂结构作为本文主电路结构,满足了电网负载的不平衡性。在选择了三相四桥臂结构的基础上,选取两种最新的SVM控制方法:基于三态滞环的瞬时空间电流相量控制法与二维空间矢量控制法,对两种方法作出详细分析比较,根据实用性原则,选取二维空间矢量控制法作为本文的控制方法。 其次,选取了主控芯片TI公司的TMS320F2812,电路中的功能尽量数字化实现,既控制了电路体积,又大大提高了系统的安全性与可靠性。设计了本系统的控制电路、驱动电路、缓冲电路、保护电路、滤波器电路等系统电路,本系统所有硬件电路均设计完毕。为了验证设计的正确性,大部分电路都用ORCAD—Pspice仿真软件进行仿真验证,小部分电路搭建实际电路,设计电路都能达到系统设计要求。 随后,简单介绍了DSP编程环境CCS。详细分析了SVPWM的工作原理,并给出二维空间矢量法在DSP中的实现方法。介绍几种MPPT方法,并选取本课题所选用的方法。 最后,给出系统仿真,分析了重点模块,得到了仿真结果。 关键词:光伏并网电源、空间矢量脉宽调制、内高频环、三相四桥臂
上传时间: 2013-05-19
上传用户:520
传统开环运行的三相混合式步进电动机驱动系统中存在着振荡和失步等不足之处。本文针对这种情况,通过对理想化三相混合式步进电动机数学模型的分析,把三相混合式步进电动机视为一种低速同步电动机。同时,结合电流跟踪型PWM控制方式及恒流斩波驱动的工作原理,设计了基于数字信号处理器TMS320F2812的全数字三相混合式步进电动机正弦波细分驱动系统。 首先,本文从三相混合式步进电动机的数学模型出发,对步进电动机的细分驱动方式进行了研究,分析了步进电动机连续均匀旋转的工作机理。然后分析了步进电动机的运行特性及细分控制的必要性,进而分析了细分驱动对改善步进电动机运行性能的作用,并针对细分运行的一些不足之处,提出了均匀细分恒转矩控制的方案。理论分析表明,在混合式步进电动机的三相定子绕组中通以互差120°的正弦波电流时,可得到类似同步机的转矩特性,使电动机均匀旋转。 本系统硬件电路以TMS320F2812为核心,采用正弦波细分和电流跟踪型脉宽调制(PWM)技术实现三相混合式步进电动机的细分控制,使三相定子绕组电流严格跟踪电流给定信号变化。应用IR公司的IR2130集成驱动芯片进行了步进电动机驱动系统的功率驱动环节的设计,节省了板上空间,减小了装置体积。同时从装置可靠性出发,设计了一套安全可靠的硬件保护电路。 实验结果表明,本文所设计的三相混合式步进电动机正弦波细分驱动器具有优良的控制性能。细分运行时减弱了混合式步进电动机的低速振动和噪声,使电动机运行平稳,并改善了其低频运行性能。
上传时间: 2013-06-27
上传用户:ca05991270
使用二极管和晶闸管实现的不控和可控整流器,电流波形畸变给电网注入大量谐波和无功功率,造成严重的电网污染。随着电力电子技术的发展,人们开始研究PWM整流技术。电压型PWM整流器具有交流侧电流低谐波、高功率因数、直流电压输出稳定等诸多优点,因此,成为当前电力电子领域研究的热点课题之一。由于PWM整流器具有以上优点,在电力系统有源滤波、无功补偿、潮流控制、太阳能发电以及交直流传动系统等领域,具有越来越广阔的应用前景。本论文对三相PWM整流器进行了研究,主要完成以下工作: 首先,对PWM整流器的工作原理做了介绍,给出了三相PWM整流器的拓扑结构,分析了PWM整流器的换流过程,给出了PWM整流器的数学模型,对交流侧电感和直流侧电容进行了设计。 其次,对电流滞环控制、电流PI控制、空间电压矢量控制三种控制方法分别进行了介绍、模型搭建和仿真分析。在直流电压的控制中加入分段PI控制,使超调量和稳态误差限制在很小的范围以内。在起动过程中串接入限流电阻,使起动电流限定允许范围以内。 最后,在进行了以上三种控制方式仿真后,针对电压空间矢量控制存在的电流误差问题,采用电流超前给定策略和基于旋转坐标系的空间电压矢量控制策略解决了电流误差问题。 仿真结果表明,论文所设计的三相电压型PWM整流器实现了高功率因数运行,实现了直流电压的稳定控制,解决了传统意义上的整流电路中存在谐波含量大、功率因数低等问题,具有良好的工程实用价值。
上传时间: 2013-06-16
上传用户:胡佳明胡佳明
随着电力电子技术的发展,交流电源系统的电能质量问题受到越来越多的关注。传统的整流环节广泛采用二极管不控整流和晶闸管相控整流电路,向电网注入了大量的谐波及无功,造成了严重的污染。提高电网侧功率因数以及降低输入电流谐波成为一个研究热点。功率因数校正技术是减小用电设备对电网造成的谐波污染,提高功率因数的一项有力措施。本文所做的主要工作包括以下几部分: 1.分析了单位功率因数三相桥式整流的工作原理,这种整流拓扑从工作原理上可以分成两部分:功率因数补偿网络和常规整流网络。在此基础上,为整流电路建立了精确的数学模型。 2.这种单位功率因数三相桥式整流的输入电感是在额定负载下计算出的,当负载发生变化时,其功率因数会降低。针对这种情况,提出了一种新的控制方法。常规整流网络向电网注入的谐波可以由功率因数补偿网络进行补偿,所以输入功率因数相应提高。负载消耗的有功由电网提供,补偿网络既不消耗有功也不提供任何有功。根据功率平衡理论,可以确定参考补偿电流。双向开关的导通和关断由滞环电流控制确定。在这一方法的控制下,双向开关工作在高频下,因此输入电感值相应降低。仿真和实验结果都表明:新的控制方法下,负载变化时,输入电流仍接近于正弦,功率因数接近1。 3.根据IEEE-519标准对谐波电流畸变率的要求,为单位功率因数三相桥式整流提出了另一种控制方法。该方法综合考虑单次谐波电流畸变率、总谐波畸变率、功率因数、有功消耗等性能指标,并进行优化,推导出最优电流补偿增益和相移。将三相负载电流通过具有最优电流补偿增益和相移的电流补偿滤波器,得到补偿后期望的电网电流,驱动双向开关导通和关断。仿真和实验都收到了满意的效果,使这一整流桥可以工作在较宽的负载范围内。 4.单位功率因数三相桥式整流中直流侧电容电压随负载的波动而波动,为提高其动、静态性能,将简单自适应控制应用到了直流侧电容电压的控制中,并提出利用改进的二次型性能指标修改自适应参数的方法,可以在实现对参考模型跟踪的同时又不使控制增量过大,与常规的PI型简单自适应控制相比在适应律的计算中引入了控制量的增量和状态误差在k及k+1时刻的采样值。利用该方法为直流侧电压设计了控制器,并进行了仿真与实验研究,结果表明与PI型适应律相比,新的控制器能提高系统的动态响应性能,负载变化时系统的鲁棒性更强。
上传时间: 2013-06-15
上传用户:WS Rye
由于高频PWM整流器可以提供正弦化低谐波的输入电流,可控功率因数,及双向能量流动,因此得到越来越广泛的应用。网侧单电感滤波会带来一些问题,首先要想得到较好的滤波效果,必须增大电感值,这样系统的动态性能会变差,而且成本增加。另外,整流器的功率比较大时,交流侧的滤波的损耗也会增大。为了解决上述问题,本文研究了基于LCL滤波的高频PWM整流器。在交流侧应用LCL 滤波器可以减少电流中的高次谐波含量,并在同样的谐波要求下,相对纯电感型滤波器可以降低电感值的大小,提高系统的动态响应。 文章首先对高频PWM整流器的工作原理做了详细的介绍,并对基于L和LCL两种不同的滤波器,分别在ABC静止坐标系,αβ静止坐标系和dq旋转坐标系中建立了数学模型。文章中将L滤波的电压型三相PWM整流器的控制方法应用于LCL滤波情况。基于dq轴模型,提出了双闭环的控制策略,电流内环采用前馈解耦控制。为了提高电流的跟随性能,按照典型Ⅰ型系统设计电流调节器。为了提高电压环的抗干扰性,按照典型Ⅱ型系统设计电压调节器。 文章还详细讨论了LCL滤波器带来的谐振问题,以及参数设计方法,列出了实际系统LCL滤波器参数的设计步骤。文章在MATLAB/SIMULINK环境下建立了PWM整流器仿真模型对系统进行了仿真,按照文章提出的理论设计的仿真系统具有良好的动态和稳态性能。 文章最后基于TMS320LF2407A设计了整流器装置的控制系统硬件和软件,并得到了初步实验结果,能满足控制要求,从而验证了控制方案的正确性。
上传时间: 2013-07-01
上传用户:yezhihao
三相逆变器作为交流供电电源的主要部分,广泛地应用于电动车、电力设备、产业设备、交通车辆等领域。逆变器的并联控制技术以其广泛的应用前景也得到越来越深入地研究。人们对逆变电源的要求越来越高,高性能、高可靠性的大功率逆变器就是当今逆变电源的发展趋势之一。提高逆变电源容量主要有两个途径,设计大功率的逆变器和采用逆变器并联技术实现电源模块化。 为此,本文以两台400kVA组合式三相逆变器为对象,采用全数字化控制方式,主要研究了大功率三相逆变器的波形控制技术和并联控制技术。本文围绕大功率组合式三相逆变器,对其主电路结构、系统的数学模型、波形控制技术以及并联系统模型、并联控制方案进行了较为详细的分析和研究。分析了适用于大功率的组合式三相逆变器结构,并给出了400kVA组合式三相逆变器的主电路设计。建立和分析了组合式三相逆变器在ABC、αβ、dq 坐标系下的数学模型。针对大功率组合式三相逆变器,采用在dq 坐标系下的三相电压闭环统一控制方案。为了使大功率三相逆变器得到较好的输出电压波形质量,采用PID 瞬时值电压反馈控制和重复控制并联结合的控制方案。分析了PID 控制器和重复控制器的原理,并针对400kVA 三相逆变器的系统性能,给出了相应数字PID 控制器和重复控制器的设计。并利用Matlab 建立了系统的仿真模型,给出了理论研究结果。提出了有效提高系统动态性能的两种方法:加负载电流前馈和动态过程中强制改变改变调制比。介绍了大功率三相逆变器的短路限流保护技术,提出了采用瞬时值限流电路和单独的软件限流环相结合的方案,保证大功率三相逆变器在短路时自动限流保护。对两台大功率三相逆变器组成的并联系统的结构、环流特性及逆变器的输出功率进行了分析。详细分析了输出阻抗特性不同时,逆变器环流和输出功率分配的差异,得出了输出阻抗对环流和功率影响的一般规律。针对大功率三相逆变器并联系统,采用基于功率误差的分散逻辑控制方案。分析了基于功率误差的分散逻辑控制原理,逆变器输出功率的检测和母线信号综合的脉宽调制原理。根据400kVA 三相逆变器并联系统的输出阻抗特性,采用了无功调节输出电压幅值和同步锁相实现相位同步的并联控制策略。 本文最后在两台400kVA组合式三相逆变器样机上得到了实验验证。实验结果进一步验证了大功率三相逆变器的波形控制和并联控制策略有效可行性。
上传时间: 2013-07-03
上传用户:coolloo