描述线性算子的结构是线性代数的中心任务之一,传统的方法多以行列式为工具,但是行列式既难懂又不直观,其定义的引入也往往缺乏动因。本书作者独辟蹊径,抛弃了这种曲折的思路,把重点放在抽象的向量空间和线性映射上,给出的证明不使用行列式,更显得简单而直观。本书把行列式的内容放在了zui后讲解,开辟了一条理解线性算子结构的新途径。书中还对一些术语、结论、证明思路、提及的数学家做了注释,增加了行文的趣味性,便于读者掌握核心概念和思想方法。
本书起点较低,不需要太多预备知识,而特色鲜明,是公认的阐述线性代数的经典佳作。原书自出版以来,迅速风靡世界,在30多个国家为200多所高校所采用,其中包括斯坦福大学和加州大学伯克利分校等知名学府。
本书强调抽象的向量空间和线性映射, 内容涉及多项式、本征值、本征向量、内积空间、迹与行列式等. 本书在内容编排和处理方法上与国内通行的做法大不相同, 它完全抛开行列式, 采用更直接、更简捷的方法阐述了向量空间和线性算子的基本理论. 书中对一些术语、结论、数学家、证明思想和启示等做了注释, 不仅增加了趣味性, 还加强了读者对一些概念和思想方法的理解.