随着杜会和经济的发展,环境水污染现象也日趋严重,迫切需要环境水质多参数监测与智能分析系统,以为环境监测、管理和控制提供科学的手段。水质多组分检测涉及到多传感器数据融合、计算机技术、电化学分析和人工智能等多学科的交叉,在众多领域有着广泛的应用。本论文研究环境水质检测与智能分析系统,论文的主要工作包括1)基于最小二乘支持向量机的在线自适应加权数据融合算法多传感器数据融合由于能够利用互补和冗余的信息,显著提高系统的可靠性而得到了广泛应用,而数据融合的关键问题是融合算法。本文深入研究了多传感器数据融合理论的基础上,针对传统融合算法研究存在的问题,提出了一种基于最小二乘支持向量机的在线自适应加权数据融合算法,并应用到水质在线检测过程中,不仅缩短了训练的时间,而且提高了融合的可靠性和灵活性
2)提出了一种离子传感器的基于最小二乘支持向量机的自校正方法:由于离子传感器的非线性、漂移和交叉敏感性等影响了其检测精度和可靠性,难以进行连续在线检测。以硝酸根离子传感器为例,研究其自校正方法,以适应动态环境的连续监测根据实验数据,详细分析了硝酸根离子传感器的响应特性,并考虑了零点和时间漂移,提出了一种基于最小二乘支持向量机硝酸根离子传感器的自校正方法,给出了详细描述和分析。
3)离子传感器故障检测的小波支持向量机特征提取和支持向量机分类方法在线连续检测的应用要求离子传感器必须具有很高的可靠性,即能够及时准确地判断出离子传感器的故障。本文采用小波支持向量机提取各传感器故障特征,再用支持向量机对故障进行分类,实现对各离子传感器的故障诊断。