New-尚未归类-412册-8.64G 超声波物位测量仪.PDF
上传时间: 2013-05-24
上传用户:晴天666
本文介绍一种用单片机制作的脉搏测量仪,只要把手指放在传感器内,很快就可以精确测出每分钟脉搏数,测量的结果用三位数字显示出来
上传时间: 2013-04-24
上传用户:wcl168881111111
表面粗糙度是机械加工中描述工件表面微观形状重要的参数。在机械零件切削的过程中,刀具或砂轮遗留的刀痕,切屑分离时的塑性变形和机床振动等因素,会使零件的表面形成微小的蜂谷。这些微小峰谷的高低程度和间距状况就叫做表面粗糙度,也称为微观不平度。表面粗糙度的测量是几何测量中的一个重要部分,它对于现代制造业的发展起了重要的推动作用。世界各国竞相进行粗糙度测量仪的研制,随着科学技术的发展,各种各样的粗糙度测量系统也竞相问世。对于粗糙度的测量,随着技术的更新,国家标准也一直在变更。最新执行的国家标准(GB/T6062-2002),规定了粗糙度测量的参数,以及制定了触针式测量粗糙度的仪器标准[1]。 随着新国家标准的执行,许多陈旧的粗糙度测量仪已经无法符合新标准的要求。而且生产工艺的提高使得原有方案的采集精度和采集速度,满足不了现代测量技术的需要。目前,各高校公差实验室及大多数企业的计量部门所使用的计量仪器(如光切显微镜、表面粗糙度检查仪等)只能测量单项参数,而能进行多参数测量的光电仪器价格较贵,一般实验室和计量室难以购置。因此如何利用现有的技术,结含现代测控技术的发展,职制出性能可靠的粗糙度测量仪,能有效地降低实验室测量仪器的成本,具有很好的实用价值和研究意义。 基于上述现状,本文在参考旧的触针式表面粗糙度测量仪技术方案的基础上,提出了一种基于ARM嵌入式系统的粗糙度测量仪的设计。这种测量仪采用了先进的传感器技术,保证了测量的范围和精度;采用了集成的信号调理电路,降低了信号在调制、检波、和放大的过程中的失真;采用了ARM处理器,快速的采集和控制测量仪系统;采用了强大的PC机人机交互功能,快速的计算粗糙度的相关参数和直观的显示粗糙度的特性曲线。 论文主要做了如下工作:首先,论文分析了触针式粗糙度测量仪的发展以及现状;然后,详细叙述了系统的硬件构成和设计,包括传感器的原理和结构分析、信号调理电路的设计、A/D转换电路的设计、微处理器系统电路以及与上位机接口电路的设计。同时,还对系统的数据采集进行了研究,开发了相应的固件程序及接口程序,完成数据采集软件的编写,并且对表面粗糙度参数的算法进行程序的实现。编写了控制应用程序,完成控制界面的设计。最终设计出一套多功能、多参数、高性能、高可靠、操作方便的表面粗糙度测量系统。
上传时间: 2013-04-24
上传用户:KIM66
随着半导体工艺的飞速发展和芯片设计水平的不断进步,ARM微处理器的性能得到大幅度地提高,同时其芯片的价格也在不断下降,嵌入式系统以其独有的优势,己经广泛地渗透到科学研究和日常生活的各个方面。 本文以ARM7 LPC2132处理器为核心,结合盖革一弥勒计数管对Time-To-Count辐射测量方法进行研究。ARM结构是基于精简指令集计算机(RISC)原理而设计的,其指令集和相关的译码机制比复杂指令集计算机要简单得多,使用一个小的、廉价的ARM微处理器就可实现很高的指令吞吐量和实时的中断响应。基于ARM7TDMI-S核的LPC2132微处理器,其工作频率可达到60MHz,这对于Time-To-Count技术是非常有利的,而且利用LPC2132芯片的定时/计数器引脚捕获功能,可以直接读取TC中的计数值,也就是说不再需要调用中断函数读取TC值,从而大大降低了计数前杂质时间。本文是在我师兄吕军的《Time-To-Count测量方法初步研究》基础上,使用了高速的ARM芯片,对基于MCS-51的Time-To-Count辐射测量系统进行了改进,进一步论证了采用高速ARM处理器芯片可以极大的提高G-M计数器的测量范围与测量精度。 首先,讨论了传统的盖革-弥勒计数管探测射线强度的方法,并指出传统的脉冲测量方法的不足。然后讨论了什么是Time-To-Count测量方法,对Time-To-Count测量方法的理论基础进行分析。指出Time-To-Count方法与传统的脉冲计数方法的区别,以及采用Time-To-Count方法进行辐射测量的可行性。 接着,详细论述基于ARM7 LPC2132处理器的Time-To-Count辐射测量仪的原理、功能、特点以及辐射测量仪的各部分接口电路设计及相关程序的编制。 最后得出结论,通过高速32位ARM处理器的使用,Time-To-Count辐射测量仪的精度和量程均得到很大的提高,对于Y射线总量测量,使用了ARM处理器的Time-To-Count辐射测量仪的量程约为20 u R/h到1R/h,数据线性程度也比以前的Time-To-CotJnt辐射测量仪要好。所以在使用Time-To-Count方法进行的辐射测量时,如何减少杂质时间以及如何提高计数前时间的测量精度,是决定Time-To-Count辐射测量仪性能的关键因素。实验用三只相同型号的J33G-M计数管分别作为探测元件,在100U R/h到lR/h的辐射场中进行试验.每个测量点测量5次取平均,得出随着照射量率的增大,辐射强度R的测量值偏小且与辐射真实值之间的误差也随之增大。如果将测量误差限定在10%的范围内,则此仪器的量程范围为20 u R/h至1R/h,量程跨度近六个数量级。而用J33型G-M计数管作常规的脉冲测量,量程范围约为50 u R/h到5000 u R/h,充分体现了运用Time-To-Count方法测量辐射强度的优越性,也从另一个角度反应了随着计数前时间的逐渐减小,杂质时间在其中的比重越来越大,对测量结果的影响也就越来越严重,尽可能的减小杂质时间在Time-To-Count方法辐射测量特别是测量高强度辐射中是关键的。笔者用示波器测出此辐射仪器的杂质时间约为6.5 u S,所以在计算定时器值的时候减去这个杂质时间,可以增加计数前时间的精确度。通过实验得出,在标定仪器的K值时,应该在照射量率较低的条件下行,而测得的计数前时间是否精确则需要在照射量率较高的条件下通过仪器标定来检验。这是因为在照射量率较低时,计数前时间较大,杂质时间对测量结果的影响不明显,数据线斜率较稳定,适宜于确定标定系数K值,而在照射量率较高时,计数前时间很小,杂质时间对测量结果的影响较大,可以明显的在数据线上反映出来,从而可以很好的反应出仪器的性能与量程。实验证明了Time-To-Count测量方法中最为关键的环节就是如何对计数前时间进行精确测量。经过对大量实验数据的分析,得到计数前时间中的杂质时间可分为硬件杂质时间和软件杂质时间,并以软件杂质时间为主,通过对程序进行合理优化,软件杂质时间可以通过程序的改进而减少,甚至可以用数学补偿的方法来抵消,从而可以得到比较精确的计数前时间,以此得到较精确的辐射强度值。对于本辐射仪,用户可以选择不同的工作模式来进行测量,当辐射场较弱时,通常采用规定次数测量的方式,在辐射场较强时,应该选用定时测量的方式。因为,当辐射场较弱时,如果用规定次数测量的方式,会浪费很多时间来采集足够的脉冲信号。当辐射场较强时,由于辐射粒子很多,产生脉冲的频率就很高,规定次数的测量会加大测量误差,当选用定时测量的方式时,由于时间的相对加长,所以记录的粒子数就相对的增加,从而提高仪器的测量精度。通过调研国内外先进核辐射测量仪器的发展现状,了解到了目前最新的核辐射总量测量技术一Time-To-Count理论及其应用情况。论证了该新技术的理论原理,根据此原理,结合高速处理器ARM7 LPC2132,对以G-计数管为探测元件的Time-To-Count辐射测量仪进行设计。论文以实验的方法论证了Time-To-Count原理测量核辐射方法的科学性,该辐射仪的量程和精度均优于以前以脉冲计数为基础理论的MCS-51核辐射测量仪。该辐射仪具有量程宽、精度高、易操作、用户界面友好等优点。用户可以定期的对仪器的标定,来减小由于电子元件的老化对低仪器性能参数造成的影响,通过Time-To-Count测量方法的使用,可以极大拓宽G-M计数管的量程。就仪器中使用的J33型G-M计数管而言,G-M计数管厂家参考线性测量范围约为50 u R/h到5000 u R/h,而用了Time-To-Count测量方法后,结合高速微处理器ARM7 LPC2132,此核辐射测量仪的量程为20 u R/h至1R/h。在允许的误差范围内,核辐射仪的量程比以前基于MCS-51的辐射仪提高了近200倍,而且精度也比传统的脉冲计数方法要高,测量结果的线性程度也比传统的方法要好。G-M计数管的使用寿命被大大延长。 综上所述,本文取得了如下成果:对国内外Time-To-Count方法的研究现状进行分析,指出了Time-To-Count测量方法的基本原理,并对Time-T0-Count方法理论进行了分析,推导出了计数前时间和两个相邻辐射粒子时间间隔之间的关系,从数学的角度论证了Time-To-Count方法的科学性。详细说明了基于ARM 7 LPC2132的Time-To-Count辐射测量仪的硬件设计、软件编程的过程,通过高速微处理芯片LPC2132的使用,成功完成了对基于MCS-51单片机的Time-To-Count测量仪的改进。改进后的辐射仪器具有量程宽、精度高、易操作、用户界面友好等特点。本论文根据实验结果总结出了Time-To-Count技术中的几点关键因素,如:处理器的频率、计数前时间、杂质时间、采样次数和测量时间等,重点分析了杂质时间的组成以及引入杂质时间的主要因素等,对国内核辐射测量仪的研究具有一定的指导意义。
标签: TimeToCount ARM 辐射测量仪
上传时间: 2013-06-24
上传用户:pinksun9
基于ARM的人体脂肪测量仪的设计,为解决传统的人体脂肪测量仪只测量人体的全身阻抗,不能反映人体各个部位的脂肪分布情况的问题,提出了人体阻抗分布模型和分段阻抗计算
上传时间: 2013-08-02
上传用户:15853744528
设计了一种基于CPLD(复杂可编程逻辑器件)的低频数字相位测量仪
上传时间: 2013-08-11
上传用户:a155166
本文设计数字式液位测量仪,采用双差压法对液位进行测量,有效地克服了液体密度变化对液位测量结果的影响,提高液位测量的精度。本设计的液位测量仪还能直接显示液位高度的厘米数。关键词:双差压法 液位测量仪 普通差压法测量液位, 精度无法保证。本文提出双差压法的改进方案,以克服液体密度变化对液位测量结果的影响,提高液位测量的精度。 双差压法液位测量原理普通差压法测量液位的原理:只有在液体密度ρ恒定不变的条件下,差压△ P 才与液位高度H 呈线性正比关系,才可通过测量差压△P 间接地获取液位H 值。但液体密度ρ是液体组份和温度的多元函数。当液体组份和温度变化导致密度ρ改变时,即使液位高度H 没有变化,也将使差压信号△ P 改变,此时若还按原先的液体密度ρ从差压信号△ P 计算出液位H,显然将导致测量误差, 严重时会造成操作人员的错误判断。为此,本文提出采用两个差压传感器,如图1。其中差压传感器1 用于测量未知液位高度H 产生的差压,即密闭容器底部和液面上方的压力差:
上传时间: 2013-11-21
上传用户:源码3
肺活量测量仪设计论文资料
上传时间: 2013-11-12
上传用户:vmznxbc
用MEGA16做的继电器参数测量仪 该电磁继电器特性参数测量仪以用8位MCU作为主控制器,并通过该MCU的DA转换输出可控稳压电源加载到继电器两端。测量继电器的最小吸合电压时,使DA输出电压从低电压到高电压变化,当继电器闭合时,记录此时的DA转化电压并显示在1602上,测量释放点压的加压顺序正好相反。在测量常闭电阻时,采用7805恒流源电路与三运放测量放大电路,再由AD返回电压值,最后MCU计算出常闭电阻。
上传时间: 2013-10-21
上传用户:wangjg
电子发烧友网核心提示:该简易皮肤湿度测量仪采用ATMEGA8作为控制中心,由高分子膜湿敏电容传感器采集皮肤湿度信号,经555时基芯片转换振荡频率,使用MCU定时计数的方法进行频率信号采集,测得的频率经过转换和处理,由SED1335驱动下的LCD1602进行显示。
上传时间: 2014-01-26
上传用户:yph853211