虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

非<b>阻塞赋值</b>

  • 溫度華氏轉變攝氏 #include <stdio.h> #include <stdlib.h> enum x {A,B,C,D,E} int main(void)

    溫度華氏轉變攝氏 #include <stdio.h> #include <stdlib.h> enum x {A,B,C,D,E} int main(void) { int a=73,b=85,c=66 { if (a>=90) printf("a=A等級!!\n") else if (a>=80) printf("73分=B等級!!\n") else if (a>=70) printf("73分=C等級!!\n") else if (a>=60) printf("73分=D等級!!\n") else if (a<60) printf("73分=E等級!!\n") } { if (b>=90) printf("b=A等級!!\n") else if (b>=80) printf("85分=B等級!!\n") else if (b>=70) printf("85分=C等級!!\n") else if (b>=60) printf("85分=D等級!!\n") else if (b<60) printf("85分=E等級!!\n") } { if (c>=90) printf("c=A等級!!\n") else if (c>=80) printf("66分=B等級!!\n") else if (c>=70) printf("66分=C等級!!\n") else if (c>=60) printf("66分=D等級!!\n") else if (c<60) printf("66分=E等級!!\n") } system("pause") return 0 }

    标签: include stdlib stdio gt

    上传时间: 2013-12-12

    上传用户:亚亚娟娟123

  • 1.推动教育学发展的内在动力是( D)的发展。A.教育规律 B.教育价值 C.教育现象 D.教育问题 2.提出“泛智”教育思想

    1.推动教育学发展的内在动力是( D)的发展。A.教育规律 B.教育价值 C.教育现象 D.教育问题 2.提出“泛智”教育思想,探讨“把一切事物教给一切人类的全部艺术”的教育家是( B)A.培根 B.夸美纽斯 C.赫尔巴特 D.赞可夫

    标签: A. B. C. D.

    上传时间: 2017-01-06

    上传用户:1427796291

  • pcf project dds sdfsd sdcsc sdcsc sdxcs gh fgb dfv fdgbvfg b fg fb fgbv gbfbf s bgtb fgbfv b fbv

    pcf project dds sdfsd sdcsc sdcsc sdxcs gh fgb dfv fdgbvfg b fg fb fgbv gbfbf s bgtb fgbfv b fbvf v fbg b v fgg ffg fggfv.

    标签: sdcsc fdgbvfg project fgbfv

    上传时间: 2014-12-19

    上传用户:xwd2010

  • 12345

    /****************temic*********t5557***********************************/    #include   <at892051.h>     #include   <string.h>    #include   <intrins.h>     #include   <stdio.h>     #define    uchar    unsigned char     #define    uint     unsigned int     #define    ulong    unsigned long     //STC12C2051AD的SFR定义     sfr  WDT_CONTR = 0xe1;//stc2051的看门狗??????     /**********全局常量************/    //写卡的命令     #define    write_command0       0//写密码     #define    write_command1       1//写配置字     #define    write_command2       2//密码写数据     #define    write_command3       3//唤醒     #define    write_command4       4//停止命令     #define    TRUE       1     #define    FALSE      0     #define    OK         0     #define    ERROR      255     //读卡的时间参数us     #define ts_min          250//270*11.0592/12=249//取近似的整数     #define ts_max          304//330*11.0592/12=304     #define t1_min          73//90*11.0592/12=83:-10调整     #define t1_max          156//180*11.0592/12=166     #define t2_min          184//210*11.0592/12=194     #define t2_max          267//300*11.0592/12=276     //***********不采用中断处理:采用查询的方法读卡时关所有中断****************/     sbit p_U2270B_Standby = P3^5;//p_U2270B_Standby PIN=13     sbit p_U2270B_CFE = P3^3;//p_U2270B_CFE     PIN=6     sbit p_U2270B_OutPut = P3^7;//p_U2270B_OutPut  PIN=2     sbit wtd_sck = P1^7;//SPI总线     sbit wtd_si = P1^3;    sbit wtd_so = P1^2;    sbit iic_data = P1^2;//lcd IIC     sbit iic_clk = P1^7;    sbit led_light = P1^6;//测试绿灯     sbit led_light1 = P1^5;//测试红灯     sbit led_light_ok  = P1^1;//读卡成功标志     sbit fengmingqi = P1^5;    /***********全局变量************************************/       uchar data Nkey_a[4] = {0xA0, 0xA1, 0xA2, 0xA3};//初始密码             //uchar idata card_snr[4];   //配置字     uchar data bankdata[28] = {1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6,7};     //存储卡上用户数据(1-7)7*4=28     uchar data cominceptbuff[6] = {1,2,3,4,5,6};//串口接收数组ram     uchar command; //第一个命令     uchar command1;//     //uint  temp;     uchar j,i;    uchar myaddr = 8;    //uchar ywqz_count,time_count;             //ywqz jishu:     uchar bdata DATA;    sbit BIT0 = DATA^0;    sbit BIT1 = DATA^1;    sbit BIT2 = DATA^2;    sbit BIT3 = DATA^3;    sbit BIT4 = DATA^4;    sbit BIT5 = DATA^5;    sbit BIT6 = DATA^6;    sbit BIT7 = DATA^7;    uchar bdata DATA1;    sbit BIT10 = DATA1^0;    sbit BIT11 = DATA1^1;    sbit BIT12 = DATA1^2;    sbit BIT13 = DATA1^3;    sbit BIT14 = DATA1^4;    sbit BIT15 = DATA1^5;    sbit BIT16 = DATA1^6;    sbit BIT17 = DATA1^7;    bit i_CurrentLevel;//i_CurrentLevel  BIT 00H(Saves current level of OutPut pin of U2270B)     bit timer1_end;    bit read_ok = 0;    //缓存定时值,因用同一个定时器     union HLint { uint W;    struct   {    uchar H;uchar L;   }   B; };//union HLint idata a     union HLint data a;    //缓存定时值,因用同一个定时器     union HLint0 { uint W;    struct {   uchar H;   uchar L; } B; };//union HLint idata a     union HLint0 data b;    /**********************函数原型*****************/    //读写操作     void f_readcard(void);//全部读出1~7 AOR唤醒     void f_writecard(uchar x);//根据命令写不同的内容和操作     void f_clearpassword(void);//清除密码     void f_changepassword(void);//修改密码     //功能子函数     void write_password(uchar data *data p);//写初始密码或数据     void write_block(uchar x,uchar data *data p);//不能用通用指针     void write_bit(bit x);//写位     /*子函数区*****************************************************/    void delay_2(uint x)    //延时,时间x*10us@12mhz,最小20us@12mhz     {    x--; x--;    while(x)    {      _nop_();      _nop_();      x--;    }    _nop_();//WDT_CONTR=0X3C;不能频繁的复位     _nop_();    }    /////////////////////////////////////////////////////////////////////     void initial(void)    {    SCON = 0x50; //串口方式1,允许接收     //SCON  =0x50;     //01010000B:10位异步收发,波特率可变,SM2=0不用接收到有效停止位才RI=1,     //REN=1允许接收     TMOD = 0x21; //定时器1 定时方式2(8位),定时器0 定时方式1(16位)     TCON = 0x40; //设定时器1 允许开始计时(IT1=1)     TH1 = 0xfD;  //FB 18.432MHz 9600 波特率     TL1 = 0xfD;  //fd 11.0592 9600     IE = 0X90;     //EA=ES=1     TR1 = 1;     //启动定时器     WDT_CONTR = 0x3c;//使能看门狗     p_U2270B_Standby = 0;//单电源     PCON = 0x00;    IP = 0x10;//uart you xian XXXPS PT1 PX1 PT0 PX0     led_light1 = 1;    led_light = 0;    p_U2270B_OutPut = 1;    }    /************************************************/    void f_readcard()//读卡     {    EA = 0;//全关,防止影响跳变的定时器计时     WDT_CONTR = 0X3C;//喂狗     p_U2270B_CFE = 1;//      delay_2(232);  //>2.5ms            /*   //   aor    用唤醒功能来防碰撞   p_U2270B_CFE = 0; delay_2(18);//start gap>150us   write_bit(1);//10=操作码读0页   write_bit(0);       write_password(&bankdata[24]);//密码block7   p_U2270B_CFE =1 ;//    delay_2(516);//编程及确认时间5.6ms   */    WDT_CONTR = 0X3C;//喂狗     led_light = 0;    b.W = 0;    while(!(read_ok == 1))    {             //while(p_U2270B_OutPut);//等一个稳定的低电平?超时判断?              while(!p_U2270B_OutPut);//等待上升沿的到来同步信号检测1       TR0 = 1;      //deng xia jiang       while(p_U2270B_OutPut);//等待下降沿       TR0 = 0;   a.B.H = TH0;   a.B.L = TL0;   TH0 = TL0 = 0;   TR0 = 1;//定时器晚启动10个周期       //同步头       if((324 < a.W) && (a.W < 353)) ;//检测同步信号1                  else     {     TR0 = 0;     TH0 = TL0 = 0;     goto read_error;    }      //等待上升沿        while(!p_U2270B_OutPut);   TR0 = 0;   a.B.H = TH0;   a.B.L = TL0;   TH0 = TL0 = 0;   TR0 = 1;//b.N1<<=8;            if(a.B.L < 195);//0.5p       else     {     TR0 = 0;     TH0 = TL0 = 0;     goto read_error;    }      //读0~7块的数据       for(j = 0;j < 28;j++)      {       //uchar i;                  for(i = 0;i < 16;i++)//8个位        {        //等待下降沿的到来         while(p_U2270B_OutPut);                TR0 = 0;     a.B.H = TH0;     a.B.L = TL0;     TH0 = TL0 = 0;     TR0 = 1;              if(t2_max < a.W/*)&&(a.W < t2_max)*/)//1P          {         b.W >>= 2;//先左移再赋值          b.B.L += 0xc0;                             i++;        }        else if(t1_min < a.B.L/*)&&(a.B.L < t1_max)*/)//0.5p         {         b.W >>= 1;         b.B.L += 0x80;                           }        else      {      TR0 = 0;      TH0 = TL0 = 0;      goto read_error;     }        i++;        while(!p_U2270B_OutPut);//上升                   TR0 = 0;     a.B.H = TH0;     a.B.L = TL0;     TH0 = TL0 = 0;     TR0 = 1;                      if(t2_min < a.W/*)&&(a.W < t2_max)*/)//1P          {         b.W >>= 2;         i++;        }        else if(t1_min < a.B.L/*a.W)&&(a.B.L < t1_max)*/)//0.5P         //else if(!(a.W==0))         {         b.W >>= 1;         //temp+=0x00;          //led_light1=0;led_light=1;delay_2(40000);         }        else      {      TR0 = 0;      TH0 = TL0 = 0;      goto read_error;     }        i++;       }       //取出奇位        DATA = b.B.L;       BIT13 = BIT7;    BIT12 = BIT5;    BIT11 = BIT3;    BIT10 = BIT1;       DATA = b.B.H;       BIT17 = BIT7;    BIT16 = BIT5;    BIT15 = BIT3;    BIT14 = BIT1;       bankdata[j] = DATA1;      }              read_ok = 1;//读卡完成了     read_error:    _nop_();    }       }    /***************************************************/    void f_writecard(uchar x)//写卡     {    p_U2270B_CFE = 1;    delay_2(232);  //>2.5ms            //psw=0 standard write     if (x == write_command0)//写密码:初始化密码     {      uchar i;      uchar data *data p;      p = cominceptbuff;      p_U2270B_CFE = 0;   delay_2(31);//start gap>330us       write_bit(1);//写操作码1:10       write_bit(0);//写操作码0       write_bit(0);//写锁定位0       for(i = 0;i < 35;i++)      {       write_bit(1);//写数据位1       }      p_U2270B_CFE = 1;      led_light1 = 0;   led_light = 1;   delay_2(40000);//测试使用       //write_block(cominceptbuff[4],p);       p_U2270B_CFE = 1;      bankdata[20] = cominceptbuff[0];//密码存入       bankdata[21] = cominceptbuff[1];      bankdata[22] = cominceptbuff[2];      bankdata[23] = cominceptbuff[3];    }    else if (x == write_command1)//配置卡参数:初始化     {      uchar data *data p;      p = cominceptbuff;      write_bit(1);//写操作码1:10       write_bit(0);//写操作码0       write_bit(0);//写锁定位0               write_block(cominceptbuff[4],p);      p_U2270B_CFE=  1;    }    //psw=1  pssword mode     else if(x == write_command2)  //密码写数据    {      uchar data*data p;      p = &bankdata[24];      write_bit(1);//写操作码1:10       write_bit(0);//写操作码0       write_password(p);//发口令       write_bit(0);//写锁定位0       p = cominceptbuff;      write_block(cominceptbuff[4],p);//写数据            }    else if(x == write_command3)//aor    //唤醒 {      //cominceptbuff[1]操作码10 X xxxxxB       uchar data *data p;      p = cominceptbuff;      write_bit(1);//10       write_bit(0);             write_password(p);//密码       p_U2270B_CFE = 1;//此时数据不停的循环传出     }    else //停止操作码     {      write_bit(1);//11       write_bit(1);             p_U2270B_CFE = 1;         }    p_U2270B_CFE = 1;    delay_2(560);//5.6ms     }    /************************************/    void f_clearpassword()//清除密码     {    uchar data *data p;    uchar i,x;          p = &bankdata[24];//原密码     p_U2270B_CFE = 0; delay_2(18);//start gap>150us     //操作码10:10xxxxxxB     write_bit(1);    write_bit(0);              for(x = 0;x < 4;x++)//发原密码     {             DATA = *(p++);      for(i = 0;i < 8;i++)      {       write_bit(BIT0);       DATA >>= 1;      }    }    write_bit(0);//锁定位0:0     p = &cominceptbuff[0];    write_block(0x00,p);//写新配置参数:pwd=0             //密码无效:即清除密码     DATA = 0x00;//停止操作码00000000B     for(i = 0;i < 2;i++)    {    write_bit(BIT7);    DATA <<= 1;    }    p_U2270B_CFE = 1;       delay_2(560);//5.6ms     }    /*********************************/    void f_changepassword()//修改密码            {       uchar data *data p;    uchar i,x,addr;    addr = 0x07;//block7     p = &Nkey_a[0];//原密码     DATA = 0x80;//操作码10:10xxxxxxB     for(i = 0;i < 2;i++)    {      write_bit(BIT7);      DATA <<= 1;    }    for(x = 0;x < 4;x++)//发原密码     {             DATA = *(p++);      for(i = 0;i < 8;i++)      {       write_bit(BIT7);       DATA >>= 1;      }    }    write_bit(0);//锁定位0:0     p = &cominceptbuff[0];    write_block(0x07,p);//写新密码     p_U2270B_CFE = 1;    bankdata[24] = cominceptbuff[0];//密码存入     bankdata[25] = cominceptbuff[1];    bankdata[26] = cominceptbuff[2];    bankdata[27] = cominceptbuff[3];    DATA = 0x00;//停止操作码00000000B     for(i = 0;i < 2;i++)    {      write_bit(BIT7);      DATA <<= 1;    }    p_U2270B_CFE = 1;       delay_2(560);//5.6ms     }    /***************************子函数***********************************/    void write_bit(bit x)//写一位     {    if(x)    {      p_U2270B_CFE = 1;   delay_2(32);//448*11.0592/120=42延时448us       p_U2270B_CFE = 0;   delay_2(28);//280*11.0592/120=26写1     }    else    {      p_U2270B_CFE = 1;   delay_2(92);//192*11.0592/120=18       p_U2270B_CFE = 0;   delay_2(28);//280*11.0592/120=26写0     }    }    /*******************写一个block*******************/    void write_block(uchar addr,uchar data *data p)    {    uchar i,j;        for(i = 0;i < 4;i++)//block0数据     {             DATA = *(p++);      for(j = 0;j < 8;j++)      {       write_bit(BIT0);       DATA >>= 1;      }    }    DATA = addr <<= 5;//0地址     for(i = 0;i < 3;i++)    {      write_bit(BIT7);      DATA <<= 1;    }                   }    /*************************************************/    void write_password(uchar data *data p)    {    uchar i,j;        for(i = 0;i < 4;i++)//     {             DATA = *(p++);      for(j = 0;j < 8;j++)      {       write_bit(BIT0);       DATA >>= 1;      }    }        }   /*************************************************/   void main()    {    initial();    TI = RI = 0;    ES = 1;    EA = 1;  delay_2(28);   //f_readcard();     while(1) {   f_readcard();      //读卡   f_writecard(command1);  //写卡    f_clearpassword();   //清除密码     f_changepassword();    //修改密码 } }

    标签: 12345

    上传时间: 2017-10-20

    上传用户:my_lcs

  • java实现大整数运算

    在包 hugeinteger 中创建功能类 HugeInteger,该类用来存放和操作一个不超过 40 位的大整数。 (1) 定义一个构造函数,用来对大整数进行初始化。参数为一个字符串。 (2) 定义 input 成员函数,实现大整数的重新赋值。参数为一个字符串,无返回 值。 (3) 定义 output 成员函数,将大整数输出到屏幕上。无参数无返回值。 (4) 定义 add 成员函数,实现两个大整数的加法。参数为一个 HugeInteger 对 象,无返回值,例如: HugeInteger A = new HugeInteger("12345"); HugeInteger B = new HugeInteger("1234"); A.add(B); 此时,A 为 13579,B 为 1234。 (5) 定义 sub 成员函数,实现两个大整数的减法。参数和返回值同 add 函数。 (6) 定义若干大整数关系运算的成员函数,包括 isEqualTo(等于,=)、 isNotEqualTo(不等于,≠)、isGreaterThan(大于,>)、isLessThan(小 于,<)、isGreaterThanOrEqualTo(大于等于,≥)和 isLessThanOrEqualTo (小于等于,≤)。这些函数的参数为一个 HugeInteger 对象,返回值为一个 布尔类型,表示关系运算的结果,例如: HugeInteger A = new HugeInteger("12345"); HugeInteger B = new HugeInteger("1234"); 那么此时 A.isGreaterThan(B)的结果应当为 True,表示 12345>1234。

    标签: java 整数 运算

    上传时间: 2019-06-01

    上传用户:idealist

  • TTP233D系列单通道触控芯片 台湾通泰永嘉微电优势代理

    产品型号:TTP232-CA6  产品品牌:TONTEK/通泰 封装形式:SOT23-6 产品年份:新年份 联 系 人:许先生 联 系 QQ:1918885898  联系手机:18898582398 台湾通泰一级代理,原装现货最有优势!工程服务,技术支持,让您的生产高枕无忧! 量大价优,保证原装正品。您有量,我有价! 概 述 ● TTP232-CA6 TonTouchTM IC 为电容感测设计,专门用于触摸板控制,装置内建稳压电路给触摸感应电路使用,稳定的触摸检测效果可已广泛的满足不同的应用需求,人体经由非导体的介电材料连结控制板,主要用于取代机械开关或按钮,此芯片经由 2 个触摸板直接控制 2 个输出脚。 特 点 ● 工作电压 2.4V ~ 5.5V ● 内建稳压电路给触摸感应电路使用 ● 工作电流 @VDD=3V,无负载 ● 待机时典型值为 2.5uA ● 最大的触摸响应时间,从待机状态开始约为 220mS @VDD=3V ● 利用每个触摸板外部的电容(1~50pF)调整灵敏度 ● 输出模式固定为直接模式和低电平输出有效模式 ● 提供最长输出时间时间 16 秒 ● 固定为多键输出模式 ● 上电后约有 0.5 秒的稳定时间,此期间内不要触摸触摸板,此时所有功能都被禁止 ● 自动校准功能 ● 刚上电的 8 秒内约每 1 秒刷新一次参考值,若在上电后的 8 秒内有触摸按键或 8 秒后仍未触摸按键,则每 4 秒刷新一次参考值 应用范围 ● 各种消费性产品 ● 取代按钮按键 此资料为产品概述,可能会有错漏。如需完整产品PDF资料可以联系许先生索取QQ:191 888 5898 ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● 产品型号:TTP226-809SN 产品品牌:TONTEK/通泰 封装形式:SSOP28 产品年份:新年份 联 系 人:许先生 联 系 QQ:1918885898   联系手机:18898582398 台湾通泰一级代理,原装现货最有优势!工程服务,技术支持,让您的生产高枕无忧! 量大价优,保证原装正品。您有量,我有价! 8按键触摸检测 IC 概 述 ● TTP226-809SN TonTouchTM 是一款使用电容式感应原理设计的触摸 IC, 提供 8 个触摸键,此触摸检测芯片是专为取代传统按键而设计, 触摸检测 PAD 的大小可依不同的灵敏度设计在合理的范围内, 低功耗与宽工作电压, 是此触摸芯片在 DC 或 AC 应用上的特性。 特 点 ● 工作电压 2.0V ~ 5.5V ● 工作电流在 VDD=3V 时典型值 80uA, 最大值 160uA ● 输出刷新率在 VDD=3V 时约 55Hz ● 16 阶可选灵敏度 (SLSE1~4 管脚选项) ● 稳定的人体接触检测,以取代传统直接切换的键(direct switch key) ● 提供直接(direct)模式、矩阵(matrix)模式和串行(serial)模式,由 pin 选项选择 ● 直接模式下最多 8 个输入 pads 和 8 个输出;  串行接口模式下最多 8 个输入 pads;  固定的 2*4 和 3*3 矩阵类型提供最多 8 个输入 pads ● 输出可由 pin 选项选择为高电平有效或低电平有效 ● 在上电之后有一段稳定时间,在此期间不要触摸键区(key-pad),且功能无效, TTP226-809SN 的是 0.8~1.0 秒 ● 始终进行自校准,当所有键没被触摸时,重校准周期 TTP226-809SN 的是 0.8~1.0 秒 应用范围 ● 各种消费性产品 ● 取代按钮按键 此资料为产品概述,可能会有错漏。如需完整产品PDF资料可以联系许先生索取QQ:191 888 5898 ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● 产品型号:TTP229 TCP229 产品后缀:TTP229-LSF/BSF/AQG/CSE/DQE/GQD/HSB/JQB/KSF 产品品牌:TONTEK/通泰 封装形式:SSOP16 SSOP20 SSOP24 QFN24 SSOP28 QFN32 SSOP48 裸片/DICE 产品年份:最新年份 联 系 人:许先生 联 系 QQ:1918885898  461366748 联系手机:18898582398 台湾通泰一级代理,原装现货最有优势!工程服务,技术支持,让您的生产高枕无忧。 量大价优,保证原装正品。您有量,我有价! 16 键/8 键触摸检测 IC 概述 TTP229 TonTouchTM IC是一款使用电容感应式原理设计的触摸芯片。此芯片内建稳压电路供 触摸传感器使用,稳定的触摸效果可以应用在各种不同应用上,人体触摸面板可以通过非导电性绝 缘材料连接,主要应用是以取代机械开关或按钮,此芯片可以独立支持8个触摸键或16个触摸键. 特点 ƒ 工作电压:2.4V~5.5V(启用内建稳压电路) 2.0V~5.5V(禁用内建稳压电路) ƒ 可外部选择启用/禁用内建稳压电路功能 ƒ 待机电流 3V电压,低速采样率8Hz的睡眠模式下: 启用内部稳压器,待机电流 => 16键模式下典型值2.5uA => 8键模式下典型值2.0uA 禁用内部稳压器,待机电流 => 16键模式下典型值2.5uA => 8键模式下典型值2.0uA ƒ 提供Option选择8键或16键模式. ƒ 提供8个直接输出独立端口,仅限于8键直接输出模式下 ƒ 具有两种串行输出方式,可以应用在8个和16个键模式  包括2-线串行模式和I 2 C通讯模式,由option所选择. ƒ 8个直接输出端口可以选择不同输出类型(CMOS/OD/OC具有高/低电平有效) ƒ 2-线串行模式可option选择高电平有效或低电平有效 ƒ 提供option选择多键或单键有效功能 ƒ 提供两种采样率,睡眠模式下采样率 8Hz,快速采样率 64Hz ƒ 具有Option选择有效键最大输出时间大约为80秒. ƒ 灵敏度可由外部电容(1~50pF)调节 ƒ 上电后需要0.5秒稳定时间 在此期间内请勿触摸按键面板,所有的功能触摸也无效. ƒ 自动校准 当所有按键在一段时间内没有被触摸到时,芯片系统重新校准时间约为4.0秒 应用范围 ● 各种消费性产品 ● 取代按钮按键 此资料为产品概述,可能会有错漏。如需完整产品PDF资料可以联系许先生索取QQ:191 888 5898 ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● 产品型号:TCP229 产品品牌:TONTEK/通泰 封装形式:DICE/裸片/晶圆---邦定COB 定制COB 产品年份:最新年份 联 系 人:许先生 联 系 QQ:1918885898  461366748 联系手机:18898582398 台湾通泰一级代理,原装现货最有优势!工程服务,技术支持,让您的生产高枕无忧。 量大价优,保证原装正品。您有量,我有价! 16 键/8 键触摸检测 IC 概述 TTP229 TonTouchTM IC是一款使用电容感应式原理设计的触摸芯片。此芯片内建稳压电路供 触摸传感器使用,稳定的触摸效果可以应用在各种不同应用上,人体触摸面板可以通过非导电性绝 缘材料连接,主要应用是以取代机械开关或按钮,此芯片可以独立支持8个触摸键或16个触摸键. 特点 ƒ 工作电压:2.4V~5.5V(启用内建稳压电路) 2.0V~5.5V(禁用内建稳压电路) ƒ 可外部选择启用/禁用内建稳压电路功能 ƒ 待机电流 3V电压,低速采样率8Hz的睡眠模式下: 启用内部稳压器,待机电流 => 16键模式下典型值2.5uA => 8键模式下典型值2.0uA 禁用内部稳压器,待机电流 => 16键模式下典型值2.5uA => 8键模式下典型值2.0uA ƒ 提供Option选择8键或16键模式. ƒ 提供8个直接输出独立端口,仅限于8键直接输出模式下 ƒ 具有两种串行输出方式,可以应用在8个和16个键模式  包括2-线串行模式和I 2 C通讯模式,由option所选择. ƒ 8个直接输出端口可以选择不同输出类型(CMOS/OD/OC具有高/低电平有效) ƒ 2-线串行模式可option选择高电平有效或低电平有效 ƒ 提供option选择多键或单键有效功能 ƒ 提供两种采样率,睡眠模式下采样率 8Hz,快速采样率 64Hz ƒ 具有Option选择有效键最大输出时间大约为80秒. ƒ 灵敏度可由外部电容(1~50pF)调节 ƒ 上电后需要0.5秒稳定时间 在此期间内请勿触摸按键面板,所有的功能触摸也无效. ƒ 自动校准 当所有按键在一段时间内没有被触摸到时,芯片系统重新校准时间约为4.0秒 应用范围 ● 各种消费性产品 ● 取代按钮按键 此资料为产品概述,可能会有错漏。如需完整产品PDF资料可以联系许先生索取QQ:191 888 5898 ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● TTP229-LSF 16键电容触摸按键触控芯片8键 12键 16键 TTP229裸片 TTP229-LSF TTP229-BSF TTP229 TCP229裸片/DICE 8键16键触摸IC TTP229-BSF/16键触摸按键IC/SSOP28触摸感应开关芯片   产品型号:TTP229-LSF 产品品牌:TONTEK/通泰 封装形式:SSOP28 产品年份:新年份 联 系 人:许先生 联 系 QQ:1918885898   联系手机:18898582398 台湾通泰一级代理,原装现货最有优势!工程服务,技术支持,让您的生产高枕无忧! 量大价优,保证原装正品。您有量,我有价! 概述 TTP229-LSF TonTouchTM IC是一款使用电容感应式原理设计的触摸芯片。此芯片内建稳压电路供触摸传感器使用,稳定的触摸效果可以应用在各种不同应用上,人体触摸面板可以通过非导电性绝缘材料连接,主要应用是以取代机械开关或按钮,此芯片可以独立支持8个触摸键或16个触摸键. 特点 ● 工作电压:2.4V~5.5V(启用内建稳压电路)  ● 2.0V~5.5V(禁用内建稳压电路)  ● 可外部选择启用/禁用内建稳压电路功能  ● 待机电流  3V电压,低速采样率8Hz的睡眠模式下:  ● 启用内部稳压器,待机电流  => 16键模式下典型值2.5uA  => 8键模式下典型值2.0uA  ● 禁用内部稳压器,待机电流  => 16键模式下典型值2.5uA  => 8键模式下典型值2.0uA  ● 提供Option选择8键或16键模式.  ● 提供8个直接输出独立端口,仅限于8键直接输出模式下  ● 具有两种串行输出方式,可以应用在8个和16个键模式  包括2-线串行模式和I2C通讯模式 ● TTP229-LSF为I2C输出通讯 ● TTP229-BSF为2线串行输出通讯 ● 8个直接输出端口可以选择不同输出类型(CMOS/OD/OC具有高/低电平有效) 2-线串行模式可option选择高电平有效或低电平有效  ● 提供option选择多键或单键有效功能  ● 提供两种采样率,睡眠模式下采样率8Hz,快速采样率 64Hz  ● 具有Option选择有效键最大输出时间大约为80秒.  ● 灵敏度可由外部电容(1~50pF)调节  ● 上电后需要0.5秒稳定时间  ● 在此期间内请勿触摸按键面板,所有的功能触摸也无效.  ● 自动校准  当所有按键在一段时间内没有被触摸到时,芯片系统重新校准时间约为4.0秒 应用范围 ● 各种消费性产品 ● 取代按钮按键 此资料为产品概述,可能会有错漏。如需完整产品PDF资料可以联系许先生索取QQ:191 888 5898 ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● 产品型号:TTP229-BSF 产品品牌:TONTEK/通泰 封装形式:SSOP28 产品年份:新年份 联 系 人:许先生 联 系 QQ:1918885898   联系手机:18898582398 台湾通泰一级代理,原装现货最有优势!工程服务,技术支持,让您的生产高枕无忧! 量大价优,保证原装正品。您有量,我有价! 概述 TTP229 TonTouchTM IC是一款使用电容感应式原理设计的触摸芯片。此芯片内建稳压电路供触摸传感器使用,稳定的触摸效果可以应用在各种不同应用上,人体触摸面板可以通过非导电性绝缘材料连接,主要应用是以取代机械开关或按钮,此芯片可以独立支持8个触摸键或16个触摸键. 特点 工作电压:2.4V~5.5V(启用内建稳压电路) 2.0V~5.5V(禁用内建稳压电路) 可外部选择启用/禁用内建稳压电路功能 待机电流 3V电压,低速采样率8Hz的睡眠模式下: 启用内部稳压器,待机电流 => 16键模式下典型值2.5uA => 8键模式下典型值2.0uA 禁用内部稳压器,待机电流 => 16键模式下典型值2.5uA => 8键模式下典型值2.0uA 提供Option选择8键或16键模式. 提供8个直接输出独立端口,仅限于8键直接输出模式下 具有两种串行输出方式,可以应用在8个和16个键模式 包括2-线串行模式和I2C通讯模式,由option所选择. 8个直接输出端口可以选择不同输出类型(CMOS/OD/OC具有高/低电平有效) 2-线串行模式可option选择高电平有效或低电平有效 提供option选择多键或单键有效功能 提供两种采样率,睡眠模式下采样率8Hz,快速采样率 64Hz 具有Option选择有效键最大输出时间大约为80秒. 灵敏度可由外部电容(1~50pF)调节 上电后需要0.5秒稳定时间 在此期间内请勿触摸按键面板,所有的功能触摸也无效. 自动校准 当所有按键在一段时间内没有被触摸到时,芯片系统重新校准时间约为4.0秒 应用范围 ● 各种消费性产品 ● 取代按钮按键 此资料为产品概述,可能会有错漏。如需完整产品PDF资料可以联系许先生索取QQ:191 888 5898 ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● 产品型号:TTP229-AQG 产品品牌:TONTEK/通泰 封装形式:QFN32 产品年份:最新年份 联 系 人:许先生 联 系 QQ:1918885898  461366748 联系手机:18898582398 台湾通泰一级代理,原装现货最有优势!工程服务,技术支持,让您的生产高枕无忧。 量大价优,保证原装正品。您有量,我有价! 16 键/8 键触摸检测 IC 概述 TTP229-AQG  TonTouchTM IC是一款使用电容感应式原理设计的触摸芯片。此芯片内建稳压电路供 触摸传感器使用,稳定的触摸效果可以应用在各种不同应用上,人体触摸面板可以通过非导电性绝 缘材料连接,主要应用是以取代机械开关或按钮,此芯片可以独立支持8个触摸键或16个触摸键. 特点 ƒ 工作电压:2.4V~5.5V(启用内建稳压电路) 2.0V~5.5V(禁用内建稳压电路) ƒ 可外部选择启用/禁用内建稳压电路功能 ƒ 待机电流 3V电压,低速采样率8Hz的睡眠模式下: 启用内部稳压器,待机电流 => 16键模式下典型值2.5uA => 8键模式下典型值2.0uA 禁用内部稳压器,待机电流 => 16键模式下典型值2.5uA => 8键模式下典型值2.0uA ƒ 提供Option选择8键或16键模式. ƒ 提供8个直接输出独立端口,仅限于8键直接输出模式下 ƒ 具有两种串行输出方式,可以应用在8个和16个键模式  包括2-线串行模式和I 2 C通讯模式,由option所选择. ƒ 8个直接输出端口可以选择不同输出类型(CMOS/OD/OC具有高/低电平有效) ƒ 2-线串行模式可option选择高电平有效或低电平有效 ƒ 提供option选择多键或单键有效功能 ƒ 提供两种采样率,睡眠模式下采样率 8Hz,快速采样率 64Hz ƒ 具有Option选择有效键最大输出时间大约为80秒. ƒ 灵敏度可由外部电容(1~50pF)调节 ƒ 上电后需要0.5秒稳定时间 在此期间内请勿触摸按键面板,所有的功能触摸也无效. ƒ 自动校准 当所有按键在一段时间内没有被触摸到时,芯片系统重新校准时间约为4.0秒 应用范围 ● 各种消费性产品 ● 取代按钮按键 此资料为产品概述,可能会有错漏。如需完整产品PDF资料可以联系许先生索取QQ:191 888 5898          

    标签: 233D TTP 233 单通道 代理 触控芯片 微电

    上传时间: 2020-01-09

    上传用户:szqxw1688

  • 拔河游戏机

    简单设计拔河游戏机包含六个模块 1.  按键模块:定义输入输出及按键模块。 2.  按键消抖模块:给每个按键两个状态,保证按键产生的信号可以消除抖动稳定,给所定按键两个状态,一个前状态,一个后状态,当时钟时钟的脉冲沿来临时,将按键状态赋值给前状态,设置定时器,当计数计满后,前状态值赋给后状态,按键输出值为前状态和后状态的取反的并。 3.  时钟分频模块:将Basys3的100M系统时钟分频成为周期为10ms,100Hz频率 4. 比较模块:由分频后的时钟信号模块控制按键信号模块,之后进入比较模块,若A的脉冲数大于B,则Led向A代表方向移动,反之则向B代表方向移动,若相等则不动。由Led的位置决定使能端的开启与关闭,若移动至A或B的顶端,则使能端控制Led无法再移动。除此还要设计计数器并可以显示在数码管上记下获胜者的盘数。 5. LED移动模块:在选定一定的时间周期内,检测按键A与按键B的产生的脉冲个数,进行比较,若A的脉冲数量大于B,则Led向A方向移动,反之则向B方向移动,若相等则不动。 6. 译码模块:将得到的信号t转化为Led的显示,最后赋值给Led输出端口,并且由数码管显示胜利的一方 。

    标签: verilog

    上传时间: 2020-05-19

    上传用户:lzj007

  • 单片机原理及应用 作业 —— 数码管 显示 学号

    一、 实验目的使用 51单片机的八位数码管顺序显示自己的学号。掌握 C 语言、汇编语言两种编程单片机控制程序的方法。掌握使用 Keil 4 或 Keil 5 软件编写、编译、调试程序的方法。掌握使用 Proteus 软件绘制电路原理图、硬件仿真和程序调试。二、实验设备笔记本电脑51 单片机(普中科技)八位数码管(单片机上已集成)应用程序:Proteus 8.0、Keil uVision5、stc-isp-v6.88E三、实验原理(1)数码管数码管按段数可分为七段数码管和 8 段数码管,八段数码管比七段数码管多一个发光二极管单元,也就是多一个小数点(DP),这个小数点可以更精确的表示数码管想要显示的内容。按能显示多少个(8),可分为 1 位、2位、3位、4位、5 位、6位、7 位等数码管。按发光二极管单元连接方式可分为共阳极数码管和共阴极数码管。共阳数码管是指将所有发光二极管的阳极接到一起形成公共阳极(COM)的数码管,共阳数码管在应用时将公共极 COM 接到+5V,当某一字段发光二极管的阴极为低电平时,相应字段就点亮,当某一字段的阴极为高电平时,相应字段就不亮。共阴数码管是指将所有发光二极管的阴极接到一起形成公共阴极(COM)的数码管,共阴数码管在应用时应将公共极 COM 接到地线 GND上,当某一字段发光二极管的阳极为高电平时,相应字段就点亮,当某一字段的阳极为低电平时,相应字段就不亮。(2)51单片机单片机(Microcontrollers)是一种集成电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器 CPU、随机存储器 RAM、只读存储器ROM、多种 I/O口和中断系统、定时器/计数器等功能集成到一块硅片上构成的一个小而完善的微型计算机系统,在工业控制领域广泛应用。MSC-51 单片机指以 8051为核心的单片机,由美国的 Intel 公司在 1980 年推出,80C51 是 MCS-51系列中的一个典型品种;其它厂商以 8051为基核开发出的CMOS 工艺单片机产品统称为 80C51 系列。本实验中我使用普中科技的 51 单片机来点亮八位数码管并使其显示我的学号(20198043)。四、 实验 过程(1)熟悉数码管使用 Proteus 软件构建电路图,学会如何点亮数码管,熟悉如何使数码管显示不同的数字(0-9)。我们可以按照上面的原理图让对应的段导通,以显示数字。对于共阳数码管,若显示数字 0,可以让标号为 A,B,C,D,E,F 的段导通,标号为 G,H 的段不导通,然后将阳极通入高电压,即显示数字 0。代码举例如下:最后效果如下,成功点亮一个数码管。经过更多尝试和学习,学会使多位数码管显示多位数字。结果举例如下:(2)多位数码管显示学号为了显示我们学号,就不能只使用一位数码管,需要使用八位数码管,相较于单位数码管,多位数码管更加复杂,驱动函数有很大区别。多位数码管使用同一组段选,不同的位选,因此就不能够一对一地固定显示,这就需要动态扫描。动态扫描:利用人眼视觉暂留,多位数码管每次只显示一位数字,但是切换频率大于 200HZ(50 × 4),这样就能让人产生同时显示多个数字的错觉。具体操作是轮流向数码管送字形码和相应的位选。一个完整的驱动程序不只以上这些,一个完整的数码管驱动有 6部分:1. 码表(ROM):存储段码(一般放在 ROM中,节省 RAM空间),例如数字 0的段码就是 0xC0,码表则包含 0-9的段码2. 显存(RAM):保存要显示的数字,取连续地址(便于查表)3. 段选赋值:通过查表(码表)操作,将显存映射到段码4. 位选切换:切换显示的位置5. 延时:显示的数字短暂保持,提升亮度6. 消影:消除切换时不同位置互相影响而产生的残影

    标签: 单片机 数码管

    上传时间: 2022-06-08

    上传用户:canderile

  • LWIP的底层结构

    Lwip协议栈的实现目的,无非是要上层用来实现app的socket编程。好,我们就从socket开始。为了兼容性,lwip的socket应该也是提供标准的socket接口函数,恩,没错,在src\inc lude\lwip\socket.h文件中可以看到下面的宏定义:#if LWIP COMPAT SOCKETS#define accept(a,b,c)Iwip accept(a,b,c)#define bind(a,b,c)Iwip bind(a,b,c)#define shutdown(a,b)Iwip shutdown(a,b)#define closesocket(s)Iwip close(s)好,这个结构先不管它,接着看下get socket函数的实现【也是在src\api\socket.c文件中】,在这里我们看到这样一条语句sock =&sockets[s];很明显,返回值也是这个sock它是根据传进来的序列号在sockets数组中找到对应的元素并返回该元素的地址。好了,那么这个sockets数组是在哪里被赋值了这些元素的呢?进行到这里似乎应该从标准的socket编程的开始,也就是socket函数讲起,那我们就顺便看一下。它对应的实际实现是下面这个函数Int Iwip socket(int domain,int type,int protocol)【src\api\socket.c】这个函数根据不同的协议类型,也就是函数中的type参数,创建了一个netconn结构体的指针,接着就是用这个指针作为参数调用了alloc socket函数,下面具体看下这个函数的实现

    标签: lwip 底层结构

    上传时间: 2022-06-19

    上传用户:aben

  • DSP2812永磁同步电机控制代码

    网上的资源,但是么有word形式。想免费分享,但必须有1积分。 FOC主要是通过对电机电流的控制实现对电机转矩(电流)、速度、位置的控制。通常是电流作为最内环,速度是中间环,位置作为最外环。本程序是DSP2812控制永磁同步电机高精度控制代码,根据Uref实际所在的扇区,确定Tx和Ty实际所对应的电压矢量,就可以计算出T1,T2,T3的值;然后再根据Uref所在的扇区画出类似图十三的三相PWM波形,就可以确定T1,T2,T3分别对应到三相A,B,C的哪一个通道,再赋值给对应通道的捕获比较寄存器,就完成了SVPWM算法。适合从事电机控制方面工作的研发人员作为参考学习使用。

    标签: dsp2812 永磁同步 电机控制

    上传时间: 2022-07-04

    上传用户:jimmy950583