虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

左右

  • JTAG CPLD实现源代码

    JTAG CPLD实现源代码,比用简单并口调试器快5倍以上。\r\n以前总觉得简单的并口jtag板速度太慢,特别是调试bootloader的时候,简直难以忍受。最近没什么事情,于是补习了几天vhdl,用cpld实现了一个快速的jtag转换板。cpld用epm7128stc100-15,晶振20兆,tck频率5兆。用sjf2410作测试,以前写50k的文件用时5分钟,现在则是50秒左右。tck的频率还可以加倍,但是不太稳定,而且速度的瓶颈已经不在tck这里,而在通讯上面了。\r\n

    标签: JTAG CPLD 源代码

    上传时间: 2013-09-04

    上传用户:LANCE

  • 一种改进的基于时间戳的空间音视频同步方法

    空间多媒体通信过程中存在的不可预测的分组数据丢失、乱序,可变的链路传输及处理时延抖动以及收发端时钟不同步与漂移等问题,这可能导致接收端在对音视频数据进行显示播放时产生音视频不同步现象。为了解决此问题,提出了一种改进的基于时间戳的空间音视频同步方法,该方法采用一种相对时间戳映射模型,结合接收端同步检测和缓冲设计,能够在无需全网时钟和反馈通道的情况下,实现空间通信中的音视频同步传输,并在接收端进行同步播放显示。对该方法进行了仿真,结果表明了设计的可行性。同步前的均方根误差SPD值平均在150 ms左右,最大能达到176.1 ms。文中方法能将SPD值控制在60 ms左右,不仅能实现音视频同步传输,并且开销很小,可应用在空间多媒体通信中。

    标签: 音视频

    上传时间: 2013-11-21

    上传用户:comer1123

  • Protel DXP快捷键大全

    enter——选取或启动 esc——放弃或取消 f1——启动在线帮助窗口 tab——启动浮动图件的属性窗口 pgup——放大窗口显示比例 pgdn——缩小窗口显示比例 end——刷新屏幕 del——删除点取的元件(1个) ctrl+del——删除选取的元件(2个或2个以上) x+a——取消所有被选取图件的选取状态 x——将浮动图件左右翻转 y——将浮动图件上下翻转 space——将浮动图件旋转90度 crtl+ins——将选取图件复制到编辑区里 shift+ins——将剪贴板里的图件贴到编辑区里 shift+del——将选取图件剪切放入剪贴板里 alt+backspace——恢复前一次的操作 ctrl+backspace——取消前一次的恢复 crtl+g——跳转到指定的位置 crtl+f——寻找指定的文字  

    标签: Protel DXP 快捷键

    上传时间: 2013-12-29

    上传用户:13033095779

  • PCB设计要求简介

    PCB设计要点 一.PCB工艺限制 1)线  一般情况下,线与线之间和线与焊盘之间的距离大于等于13mil,实际应用中,条件允许时应考虑加大距离;布线密度较高时,可考虑但不建议采用IC脚间走两根线,线的宽度为10mil,线间距不小于10mil。特殊情况下,当器件管脚较密,宽度较窄时,可按适当减小线宽和线间距。  2)焊盘 焊盘与过渡孔的基本要求是:盘的直径比孔的直径要大于0.6mm;例如,通用插脚式电阻、电容和集成电路等,采用盘/孔尺寸 1.6mm/0.8mm(63mil/32mil),插座、插针和二极管1N4007等,采用1.8mm/1.0mm(71mil/39mil)。实际应用中,应根据实际元件的尺寸来定,有条件时,可适当加大焊盘尺寸;PCB板上设计的元件安装孔径应比元件管脚的实际尺寸大0.2~0.4mm左右。  3)过孔 一般为1.27mm/0.7mm(50mil/28mil);当布线密度较高时,过孔尺寸可适当减小,但不宜过小,可考虑采用1.0mm/0.6mm(40mil/24mil)。  二.网表的作用     网表是连接电气原理图和PCB板的桥梁。是对电气原理图中各元件之间电气连接的定义,是从图形化的原理图中提炼出来的元件连接网络的文字表达形式。在PCB制作中加载网络表,可以自动得到与原理图中完全相

    标签: PCB

    上传时间: 2014-12-03

    上传用户:LP06

  • Cadence完全学习手册(下)

    这是兰吉昌编写的《Cadence完全自学手册》的电子版,分上,中,下三册,每册17M左右,较大,资料相当全哦!

    标签: Cadence 学习手册

    上传时间: 2013-11-02

    上传用户:qq521

  • 4-7W开关电源方案

    该电源 方案 主要 用于 LED球泡灯 ,成本低廉 PF值0.5左右.文件包含完整的BOM,变压器参数还有PCB文件,属于成熟方案

    标签: 开关电源 方案

    上传时间: 2013-11-16

    上传用户:hxy200501

  • 模块电源功能性参数指标及测试方法

      模块电源的电气性能是通过一系列测试来呈现的,下列为一般的功能性测试项目,详细说明如下: 电源调整率(Line Regulation) 负载调整率(Load Regulation) 综合调整率(Conmine Regulation) 输出涟波及杂讯(Ripple & Noise) 输入功率及效率(Input Power, Efficiency) 动态负载或暂态负载(Dynamic or Transient Response) 起动(Set-Up)及保持(Hold-Up)时间 常规功能(Functions)测试 1. 电源调整率   电源调整率的定义为电源供应器于输入电压变化时提供其稳定输出电压的能力。测试步骤如下:于待测电源供应器以正常输入电压及负载状况下热机稳定后,分别于低输入电压(Min),正常输入电压(Normal),及高输入电压(Max)下测量并记录其输出电压值。 电源调整率通常以一正常之固定负载(Nominal Load)下,由输入电压变化所造成其输出电压偏差率(deviation)的百分比,如下列公式所示:   [Vo(max)-Vo(min)] / Vo(normal) 2. 负载调整率   负载调整率的定义为开关电源于输出负载电流变化时,提供其稳定输出电压的能力。测试步骤如下:于待测电源供应器以正常输入电压及负载状况下热机稳定后,测量正常负载下之输出电压值,再分别于轻载(Min)、重载(Max)负载下,测量并记录其输出电压值(分别为Vo(max)与Vo(min)),负载调整率通常以正常之固定输入电压下,由负载电流变化所造成其输出电压偏差率的百分比,如下列公式所示:   [Vo(max)-Vo(min)] / Vo(normal)    3. 综合调整率   综合调整率的定义为电源供应器于输入电压与输出负载电流变化时,提供其稳定输出电压的能力。这是电源调整率与负载调整率的综合,此项测试系为上述电源调整率与负载调整率的综合,可提供对电源供应器于改变输入电压与负载状况下更正确的性能验证。 综合调整率用下列方式表示:于输入电压与输出负载电流变化下,其输出电压之偏差量须于规定之上下限电压范围内(即输出电压之上下限绝对值以内)或某一百分比界限内。 4. 输出杂讯   输出杂讯(PARD)系指于输入电压与输出负载电流均不变的情况下,其平均直流输出电压上的周期性与随机性偏差量的电压值。输出杂讯是表示在经过稳压及滤波后的直流输出电压上所有不需要的交流和噪声部份(包含低频之50/60Hz电源倍频信号、高于20 KHz之高频切换信号及其谐波,再与其它之随机性信号所组成)),通常以mVp-p峰对峰值电压为单位来表示。   一般的开关电源的规格均以输出直流输出电压的1%以内为输出杂讯之规格,其频宽为20Hz到20MHz。电源实际工作时最恶劣的状况(如输出负载电流最大、输入电源电压最低等),若电源供应器在恶劣环境状况下,其输出直流电压加上杂讯后之输出瞬时电压,仍能够维持稳定的输出电压不超过输出高低电压界限情形,否则将可能会导致电源电压超过或低于逻辑电路(如TTL电路)之承受电源电压而误动作,进一步造成死机现象。   同时测量电路必须有良好的隔离处理及阻抗匹配,为避免导线上产生不必要的干扰、振铃和驻波,一般都采用双同轴电缆并以50Ω于其端点上,并使用差动式量测方法(可避免地回路之杂讯电流),来获得正确的测量结果。 5. 输入功率与效率   电源供应器的输入功率之定义为以下之公式:   True Power = Pav(watt) = Vrms x Arms x Power Factor 即为对一周期内其输入电压与电流乘积之积分值,需注意的是Watt≠VrmsArms而是Watt=VrmsArmsxP.F.,其中P.F.为功率因素(Power Factor),通常无功率因素校正电路电源供应器的功率因素在0.6~0.7左右,其功率因素为1~0之间。   电源供应器的效率之定义为为输出直流功率之总和与输入功率之比值。效率提供对电源供应器正确工作的验证,若效率超过规定范围,即表示设计或零件材料上有问题,效率太低时会导致散热增加而影响其使用寿命。 6. 动态负载或暂态负载   一个定电压输出的电源,于设计中具备反馈控制回路,能够将其输出电压连续不断地维持稳定的输出电压。由于实际上反馈控制回路有一定的频宽,因此限制了电源供应器对负载电流变化时的反应。若控制回路输入与输出之相移于增益(Unity Gain)为1时,超过180度,则电源供应器之输出便会呈现不稳定、失控或振荡之现象。实际上,电源供应器工作时的负载电流也是动态变化的,而不是始终维持不变(例如硬盘、软驱、CPU或RAM动作等),因此动态负载测试对电源供应器而言是极为重要的。可编程序电子负载可用来模拟电源供应器实际工作时最恶劣的负载情况,如负载电流迅速上升、下降之斜率、周期等,若电源供应器在恶劣负载状况下,仍能够维持稳定的输出电压不产生过高激(Overshoot)或过低(Undershoot)情形,否则会导致电源之输出电压超过负载组件(如TTL电路其输出瞬时电压应介于4.75V至5.25V之间,才不致引起TTL逻辑电路之误动作)之承受电源电压而误动作,进一步造成死机现象。 7. 启动时间与保持时间   启动时间为电源供应器从输入接上电源起到其输出电压上升到稳压范围内为止的时间,以一输出为5V的电源供应器为例,启动时间为从电源开机起到输出电压达到4.75V为止的时间。   保持时间为电源供应器从输入切断电源起到其输出电压下降到稳压范围外为止的时间,以一输出为5V的电源供应器为例,保持时间为从关机起到输出电压低于4.75V为止的时间,一般值为17ms或20ms以上,以避免电力公司供电中于少了半周或一周之状况下而受影响。    8. 其它 在电源具备一些特定保护功能的前提下,还需要进行保护功能测试,如过电压保护(OVP)测试、短路保护测试、过功保护等

    标签: 模块电源 参数 指标 测试方法

    上传时间: 2013-10-22

    上传用户:zouxinwang

  • 电脑电源的通病及维修方法

    电脑电源的通病及维修方法 在我修过的ATX电源中的故障一般都是接电后没反映,80%的故障都是无+5V待机电压,只要将待机电源的开关管的基极到+310V之间的启动电阻换掉就可修复,此电阻的阻值一般在500K-600K左右,也可以换的较大点。 待机电压有了不开机的原因多是+12V、+5V、+3。3V的整流管击穿,造成电源保护,也有是电容短路坏掉的。 在一些低档的电源中也存在主电源滤波电容鼓起、漏电的故障。 ATX电源输入电路的维修! ATX电源的输入电路主要由保险丝、交流抗干扰电路、限流电阻、过压保护电路等组成。长城电源号称具备双重过压保护,其输入电路比较有特色。

    标签: 电脑电源

    上传时间: 2013-11-05

    上传用户:fandeshun

  • led灯闪烁,左右移动,延时的综合应用

    单片机led灯的应用

    标签: led 闪烁 移动 延时

    上传时间: 2014-12-24

    上传用户:气温达上千万的

  • 移动电源方案芯片 升压ic

    专业代理KADIOM移动电源IC KADIOM移动电源IC 芯片 供应 程序 电路图 原理图 使用 专用 价格 应用 生产 方案 型号 免费 提供 样品 测试 资料:升压ic ,控制ic,充电ic集成一体 集成充电控制 ,升压控制 ,放电管理 ,集成度高,外围元件少,绝对低成本 ,生产简单,可靠性高,稳定性强,转换效率高,多次长时间反复测试,可达86%左右,智能识别充电 KADIOM移动电源IC 芯片 供应 程序 电路图 原理图 开发 使用 专用 价格 应用 生产 方案 型号 免费 提供 样品 测试 资料

    标签: 移动电源 方案 升压 芯片

    上传时间: 2013-10-14

    上传用户:cjh1129