虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

封装<b>库</b>

  • 基于单片机的数字化B超键盘设计

    针对目前使用的RS232接口数字化B超键盘存在PC主机启动时不能设置BIOS,提出一种PS2键盘的设计方法。基于W78E052D单片机,采用8通道串行A/D转换器设计了8个TGC电位器信息采集电路,电位器位置信息以键盘扫描码序列形式发送,正交编码器信号通过XC9536XL转换为单片机可接收的中断信号,软件接收到中断信息后等效处理成按键。结果表明,在满足开机可设置BIOS同时,又可实现超声特有功能,不需要专门设计驱动程序,接口简单,成本低。 Abstract:  Aiming at the problem of the digital ultrasonic diagnostic imaging system keyboard with RS232 interface currently used couldn?蒺t set the BIOS when the PC boot, this paper proposed a design method of PS2 keyboards. Based on W78E052D microcontroller,designed eight TGC potentiometers information acquisition circuit with 8-channel serial A/D converter, potentiometer position information sent out with keyboard scan code sequentially.The control circuit based on XC9536 CPLD is used for converting the mechanical actions of the encoders into the signals that can be identified by the MCU, software received interrupt information and equivalently treatmented as key. The results show that the BIOS can be set to meet the boot, ultrasound specific functionality can be achieved at the same time, it does not require specially designed driver,the interface is simple and low cost.    

    标签: 单片机 B超 数字化 键盘设计

    上传时间: 2013-10-10

    上传用户:asdfasdfd

  • 驱动程序与应用程序的接口

    有两种方式可以让设备和应用程序之间联系:1. 通过为设备创建的一个符号链;2. 通过输出到一个接口WDM驱动程序建议使用输出到一个接口而不推荐使用创建符号链的方法。这个接口保证PDO的安全,也保证安全地创建一个惟一的、独立于语言的访问设备的方法。一个应用程序使用Win32APIs来调用设备。在某个Win32 APIs和设备对象的分发函数之间存在一个映射关系。获得对设备对象访问的第一步就是打开一个设备对象的句柄。 用符号链打开一个设备的句柄为了打开一个设备,应用程序需要使用CreateFile。如果该设备有一个符号链出口,应用程序可以用下面这个例子的形式打开句柄:hDevice = CreateFile("\\\\.\\OMNIPORT3",  GENERIC_READ | GENERIC_WRITE,FILE_SHARE_READ,  NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL ,NULL);文件路径名的前缀“\\.\”告诉系统本调用希望打开一个设备。这个设备必须有一个符号链,以便应用程序能够打开它。有关细节查看有关Kdevice和CreateLink的内容。在上述调用中第一个参数中前缀后的部分就是这个符号链的名字。注意:CreatFile中的第一个参数不是Windows 98/2000中驱动程序(.sys文件)的路径。是到设备对象的符号链。如果使用DriverWizard产生驱动程序,它通常使用类KunitizedName来构成设备的符号链。这意味着符号链名有一个附加的数字,通常是0。例如:如果链接名称的主干是L“TestDevice”那么在CreateFile中的串就该是“\\\\.\\TestDevice0”。如果应用程序需要被覆盖的I/O,第六个参数(Flags)必须或上FILE_FLAG_OVERLAPPED。 使用一个输出接口打开句柄用这种方式打开一个句柄会稍微麻烦一些。DriverWorks库提供两个助手类来使获得对该接口的访问容易一些,这两个类是CDeviceInterface, 和 CdeviceInterfaceClass。CdeviceInterfaceClass类封装了一个设备信息集,该信息集包含了特殊类中的所有设备接口信息。应用程序能有用CdeviceInterfaceClass类的一个实例来获得一个或更多的CdeviceInterface类的实例。CdeviceInterface类是一个单一设备接口的抽象。它的成员函数DevicePath()返回一个路径名的指针,该指针可以在CreateFile中使用来打开设备。下面用一个小例子来显示这些类最基本的使用方法:extern GUID TestGuid;HANDLE OpenByInterface(  GUID* pClassGuid,  DWORD instance,  PDWORD pError){  CDeviceInterfaceClass DevClass(pClassGuid, pError);  if (*pError != ERROR_SUCCESS)    return INVALID_HANDLE_VALUE;  CDeviceInterface DevInterface(&DevClass, instance, pError);  if (*pError != ERROR_SUCCESS)    return INVALID_HANDLE_VALUE;  cout << "The device path is "    << DevInterface.DevicePath()    << endl;   HANDLE hDev;  hDev = CreateFile(   DevInterface.DevicePath(),    GENERIC_READ | GENERIC_WRITE,    FILE_SHARE_READ | FILE_SHARE_WRITE,    NULL,    OPEN_EXISTING,    FILE_ATTRIBUTE_NORMAL,    NULL  );  if (hDev == INVALID_HANDLE_VALUE)    *pError = GetLastError();  return hDev;} 在设备中执行I/O操作一旦应用程序获得一个有效的设备句柄,它就能使用Win32 APIs来产生到设备对象的IRPs。下面的表显示了这种对应关系。Win32 API  DRIVER_FUNCTION_xxxIRP_MJ_xxx  KDevice subclass member function CreateFile  CREATE  Create ReadFile  READ  Read WriteFile  WRITE  Write DeviceIoControl  DEVICE_CONTROL  DeviceControl CloseHandle  CLOSECLEANUP  CloseCleanUp 需要解释一下设备类成员的Close和CleanUp:CreateFile使内核为设备创建一个新的文件对象。这使得多个句柄可以映射同一个文件对象。当这个文件对象的最后一个用户级句柄被撤销后,I/O管理器调用CleanUp。当没有任何用户级和核心级的对文件对象的访问的时候,I/O管理器调用Close。如果被打开的设备不支持指定的功能,则调用相应的Win32将引起错误(无效功能)。以前为Windows95编写的VxD的应用程序代码中可能会在打开设备的时候使用FILE_FLAG_DELETE_ON_CLOSE属性。在Windows NT/2000中,建议不要使用这个属性,因为它将导致没有特权的用户企图打开这个设备,这是不可能成功的。I/O管理器将ReadFile和WriteFile的buff参数转换成IRP域的方法依赖于设备对象的属性。当设备设置DO_DIRECT_IO标志,I/O管理器将buff锁住在存储器中,并且创建了一个存储在IRP中的MDL域。一个设备可以通过调用Kirp::Mdl来存取MDL。当设备设置DO_BUFFERED_IO标志,设备对象分别通过KIrp::BufferedReadDest或 KIrp::BufferedWriteSource为读或写操作获得buff地址。当设备不设置DO_BUFFERED_IO标志也不设置DO_DIRECT_IO,内核设置IRP 的UserBuffer域来对应ReadFile或WriteFile中的buff参数。然而,存储区并没有被锁住而且地址只对调用进程有效。驱动程序可以使用KIrp::UserBuffer来存取IRP域。对于DeviceIoControl调用,buffer参数的转换依赖于特殊的I/O控制代码,它不在设备对象的特性中。宏CTL_CODE(在winioctl.h中定义)用来构造控制代码。这个宏的其中一个参数指明缓冲方法是METHOD_BUFFERED, METHOD_IN_DIRECT, METHOD_OUT_DIRECT, 或METHOD_NEITHER。下面的表显示了这些方法和与之对应的能获得输入缓冲与输出缓冲的KIrp中的成员函数:Method  Input Buffer Parameter  Output Buffer Parameter METHOD_BUFFERED  KIrp::IoctlBuffer KIrp::IoctlBuffer METHOD_IN_DIRECT  KIrp::IoctlBuffer KIrp::Mdl METHOD_OUT_DIRECT  KIrp::IoctlBuffer KIrp::Mdl METHOD_NEITHER  KIrp::IoctlType3InputBuffer KIrp::UserBuffer 如果控制代码指明METHOD_BUFFERED,系统分配一个单一的缓冲来作为输入与输出。驱动程序必须在向输出缓冲放数据之前拷贝输入数据。驱动程序通过调用KIrp::IoctlBuffer获得缓冲地址。在完成时,I/O管理器从系统缓冲拷贝数据到提供给Ring 3级调用者使用的缓冲中。驱动程序必须在结束前存储拷贝到IRP的Information成员中的数据个数。如果控制代码不指明METHOD_IN_DIRECT或METHOD_OUT_DIRECT,则DeviceIoControl的参数呈现不同的含义。参数InputBuffer被拷贝到一个系统缓冲,这个缓冲驱动程序可以通过调用KIrp::IoctlBuffer。参数OutputBuffer被映射到KMemory对象,驱动程序对这个对象的访问通过调用KIrp::Mdl来实现。对于METHOD_OUT_DIRECT,调用者必须有对缓冲的写访问权限。注意,对METHOD_NEITHER,内核只提供虚拟地址;它不会做映射来配置缓冲。虚拟地址只对调用进程有效。这里是一个用METHOD_BUFFERED的例子:首先,使用宏CTL_CODE来定义一个IOCTL代码:#define IOCTL_MYDEV_GET_FIRMWARE_REV \CTL_CODE (FILE_DEVICE_UNKNOWN,0,METHOD_BUFFERED,FILE_ANY_ACCESS)现在使用一个DeviceIoControl调用:BOOLEAN b;CHAR FirmwareRev[60];ULONG FirmwareRevSize;b = DeviceIoControl(hDevice, IOCTL_MYDEV_GET_VERSION_STRING,  NULL, // no input  注意,这里放的是包含有执行操作命令的字符串指针  0, FirmwareRev,      //这里是output串指针,存放从驱动程序中返回的字符串。sizeof(FirmwareRev),& FirmwareRevSize,  NULL // not overlapped I/O );如果输出缓冲足够大,设备拷贝串到里面并将拷贝的资结束设置到FirmwareRevSize中。在驱动程序中,代码看起来如下所示:const char* FIRMWARE_REV = "FW 16.33 v5";NTSTATUS MyDevice::DeviceControl( KIrp I ){  ULONG fwLength=0;  switch ( I.IoctlCode() )  {    case IOCTL_MYDEV_GET_FIRMWARE_REV:      fwLength = strlen(FIRMWARE_REV)+1;      if (I.IoctlOutputBufferSize() >= fwLength)      {        strcpy((PCHAR)I.IoctlBuffer(),FIRMWARE_REV);        I.Information() = fwLength;         return I.Complete(STATUS_SUCCESS);      }      else      {              }    case . . .   } }

    标签: 驱动程序 应用程序 接口

    上传时间: 2013-10-17

    上传用户:gai928943

  • 基于USB接口的数据采集模块的设计与实现

    基于USB接口的数据采集模块的设计与实现Design and Implementation of USB-Based Data Acquisition Module路 永 伸(天津科技大学电子信息与自动化学院,天津300222)摘要文中给出基于USB接口的数据采集模块的设计与实现。硬件设计采用以Adpc831与PDIUSBDI2为主的器件进行硬件设计,采用Windriver开发USB驱动,并用Visual C十十6.0对主机软件中硬件接口操作部分进行动态链接库封装。关键词USB 数据采集Adpc831 PDNSBDI2 Windriver动态链接库Abstract T hed esigna ndim plementaitono fU SB-BasedD ataA cquisiitonM oduleis g iven.Th ec hips oluitonm ainlyw ithA dpc831a ndP DTUSBD12i sused for hardware design. The USB drive is developed场Wmdriver, and the operation on the hardware interface is packaged into Dynamic Link Libraries场Visual C++6.0.  Keywords USB DataA cquisition Adttc831 PDfUSBD12 Windriver0 引言US B总 线 是新一代接口总线,最初推出的目的是为了统一取代PC机的各类外设接口,迄今经历了1.0,1.1与2.0版本3个标准。在国内基于USB总线的相关设计与开发也得到了快速的发展,很多设计者从各自的应用领域,用不同方案设计出了相应的装置[1,2]。数据采集是工业控制中一个普遍而重要的环节,因此开发基于USB接口的数据采集模块具有很强的现实应用意义。虽然 US B总线标准已经发展到2.0版本,但由于工业控制现场干扰信号的情况比较复杂,高速数据传输的可靠性不容易被保证,并且很多场合对数据采集的实时性要求并不高,开发2.0标准产品的成本又较1.1标准产品高,所以笔者认为,在工业控制领域,目前开发基于USB总线1.1标准实现的数据采集模块的实用意义大于相应2.0标准模块。

    标签: USB 接口 数据采集模块

    上传时间: 2013-10-23

    上传用户:q3290766

  • Protel封装库名称查询表

    Protel封装库名称查询表

    标签: Protel 封装库 查询

    上传时间: 2014-01-17

    上传用户:lanjisu111

  • TKS仿真器B系列快速入门

    TKS仿真器B系列快速入门

    标签: TKS 仿真器 快速入门

    上传时间: 2013-10-31

    上传用户:aix008

  • MINI2440原理图和封装库

    Mini2440是一款真正低价实用的ARM9开发板,是目前国内性价比最高的一款学习板;它采用Samsung S3C2440为微处理器,并采用专业稳定的CPU内核电源芯片和复位芯片来保证系统运行时的稳定性。mini2440的PCB采用沉金工艺的四层板设计,专业等长布线,保证关键信号线的信号完整性,生产采用机器贴片,批量生产;出厂时都经过严格的质量控制,配合这本十分详细的手册,可以迅速帮你掌握嵌入式 Linux和WinCE开发的流程,只要有C语言基础的人一般2周即可入门。 附件含有MINI2440原理图和封装库

    标签: MINI 2440 原理图 封装库

    上传时间: 2013-10-08

    上传用户:1595690

  • 新!DXP及AD的元件库与封装库(不下可惜!)

    DXP及AD的元件库与封装库

    标签: DXP 元件库 封装库

    上传时间: 2013-10-09

    上传用户:ytulpx

  • 新!DXP及AD的元件库与封装库(不下可惜!)

    DXP及AD的元件库与封装库

    标签: DXP 元件库 封装库

    上传时间: 2013-11-14

    上传用户:manlian

  • ADI封装库

    ADI封装库

    标签: ADI 封装库

    上传时间: 2013-12-04

    上传用户:zengduo

  • sd-card封装库

    里面包含了常见SDcard 封装库文件,有需要自己下,没有积分的请留下邮箱

    标签: sd-card 封装库

    上传时间: 2013-10-14

    上传用户:stst