包括二分法,Newton下山法和improved Newton迭代法
标签: 分
上传时间: 2016-11-19
上传用户:yoleeson
这是松弛法编程,它是高斯-赛德尔迭代法的一种加速收敛的方法。是大型稀疏矩阵线性方程组的有效解法之一。
标签: 编程
上传时间: 2016-12-02
上传用户:李梦晗
用牛顿迭代的方法,编写程序,是函数迭代的效率提高,比一般的迭代法要好很多
上传时间: 2013-12-16
上传用户:黄华强
解非线性方程组的N元牛顿法,属于迭代法范畴
上传时间: 2016-12-21
上传用户:fredguo
vc++实现线性方程组求解 1全选主元高斯消元法 2全选主元高斯-约当消元法 3三对角方程组的追赶法 4一般带型方程组求解 5对称方程组的分解法 6对称正定方程组的平方根法 7大型稀疏方程组全选主元高斯-约当法 8托伯利兹方程组的列文逊法 9高斯-赛德尔迭代法 10对称正定方程组的共轭梯度法 11线性最小二乘问题的豪斯荷尔德变换法 12线性最小二乘问题的广义逆法 13病态方程组求解 最后注意,在VC++ 6.0中设置好路径,特别是include目录(文件夹)的路径,否则在编译时会出现找不到头文 件的错误,使编译无法正常进行。
上传时间: 2014-01-17
上传用户:Zxcvbnm
1、 采用原始变量法,即以速度U、V及压力P作为直接求解的变量 2、 守恒型的差分格式,离散方程系对守恒型的控制方程通过对控制容积作积分而得出的,无论网格疏密程度如何,均满足在计算区域内守恒的条件; 3、 采用区域离散化方法B,即先定控制体界面、再定节点位置 4、 采用交叉网格,速度U、V与其他变量分别存储于三套网格系统中; 5、 不同的项在空间离散化过程中去不同的型线假设,源项采用局部线性化方法;扩散——对流项采用乘方格式(但很容易转化为中心差分、迎风差分或混合格式);街面上的扩散系数采用调和平均法,而密度与流速则用线性插值; 6、 不稳态问题采用全隐格式,以保证在任何时间步长下均可获得具有物理意义的解; 7、 边界条件采用附加源项法处理; 8、 耦合的流速与压力采用SIMPLE算法来求解; 9、 迭代式的求解方法,对非线性问题,整个求解过程具有迭代性质;对于代数方程也采用迭代法求解; 10、 采用交替方向先迭代法求解代数方程并补以块修正技术以促进收敛。
标签: 变量
上传时间: 2013-12-18
上传用户:时代电子小智
1、 采用原始变量法,即以速度U、V及压力P作为直接求解的变量 2、 守恒型的差分格式,离散方程系对守恒型的控制方程通过对控制容积作积分而得出的,无论网格疏密程度如何,均满足在计算区域内守恒的条件; 3、 采用区域离散化方法B,即先定控制体界面、再定节点位置 4、 采用交叉网格,速度U、V与其他变量分别存储于三套网格系统中; 5、 不同的项在空间离散化过程中去不同的型线假设,源项采用局部线性化方法;扩散——对流项采用乘方格式(但很容易转化为中心差分、迎风差分或混合格式);街面上的扩散系数采用调和平均法,而密度与流速则用线性插值; 6、 不稳态问题采用全隐格式,以保证在任何时间步长下均可获得具有物理意义的解; 7、 边界条件采用附加源项法处理; 8、 耦合的流速与压力采用SIMPLE算法来求解; 9、 迭代式的求解方法,对非线性问题,整个求解过程具有迭代性质;对于代数方程也采用迭代法求解; 10、 采用交替方向先迭代法求解代数方程并补以块修正技术以促进收敛。
标签: 变量
上传时间: 2013-12-13
上传用户:qlpqlq
1、 采用原始变量法,即以速度U、V及压力P作为直接求解的变量 2、 守恒型的差分格式,离散方程系对守恒型的控制方程通过对控制容积作积分而得出的,无论网格疏密程度如何,均满足在计算区域内守恒的条件; 3、 采用区域离散化方法B,即先定控制体界面、再定节点位置 4、 采用交叉网格,速度U、V与其他变量分别存储于三套网格系统中; 5、 不同的项在空间离散化过程中去不同的型线假设,源项采用局部线性化方法;扩散——对流项采用乘方格式(但很容易转化为中心差分、迎风差分或混合格式);街面上的扩散系数采用调和平均法,而密度与流速则用线性插值; 6、 不稳态问题采用全隐格式,以保证在任何时间步长下均可获得具有物理意义的解; 7、 边界条件采用附加源项法处理; 8、 耦合的流速与压力采用SIMPLE算法来求解; 9、 迭代式的求解方法,对非线性问题,整个求解过程具有迭代性质;对于代数方程也采用迭代法求解; 10、 采用交替方向先迭代法求解代数方程并补以块修正技术以促进收敛。
标签: 变量
上传时间: 2016-12-28
上传用户:wab1981
1、 采用原始变量法,即以速度U、V及压力P作为直接求解的变量 2、 守恒型的差分格式,离散方程系对守恒型的控制方程通过对控制容积作积分而得出的,无论网格疏密程度如何,均满足在计算区域内守恒的条件; 3、 采用区域离散化方法B,即先定控制体界面、再定节点位置 4、 采用交叉网格,速度U、V与其他变量分别存储于三套网格系统中; 5、 不同的项在空间离散化过程中去不同的型线假设,源项采用局部线性化方法;扩散——对流项采用乘方格式(但很容易转化为中心差分、迎风差分或混合格式);街面上的扩散系数采用调和平均法,而密度与流速则用线性插值; 6、 不稳态问题采用全隐格式,以保证在任何时间步长下均可获得具有物理意义的解; 7、 边界条件采用附加源项法处理; 8、 耦合的流速与压力采用SIMPLE算法来求解; 9、 迭代式的求解方法,对非线性问题,整个求解过程具有迭代性质;对于代数方程也采用迭代法求解; 10、 采用交替方向先迭代法求解代数方程并补以块修正技术以促进收敛。
标签: 变量
上传时间: 2013-11-25
上传用户:wcl168881111111
1、 采用原始变量法,即以速度U、V及压力P作为直接求解的变量 2、 守恒型的差分格式,离散方程系对守恒型的控制方程通过对控制容积作积分而得出的,无论网格疏密程度如何,均满足在计算区域内守恒的条件; 3、 采用区域离散化方法B,即先定控制体界面、再定节点位置 4、 采用交叉网格,速度U、V与其他变量分别存储于三套网格系统中; 5、 不同的项在空间离散化过程中去不同的型线假设,源项采用局部线性化方法;扩散——对流项采用乘方格式(但很容易转化为中心差分、迎风差分或混合格式);街面上的扩散系数采用调和平均法,而密度与流速则用线性插值; 6、 不稳态问题采用全隐格式,以保证在任何时间步长下均可获得具有物理意义的解; 7、 边界条件采用附加源项法处理; 8、 耦合的流速与压力采用SIMPLE算法来求解; 9、 迭代式的求解方法,对非线性问题,整个求解过程具有迭代性质;对于代数方程也采用迭代法求解; 10、 采用交替方向先迭代法求解代数方程并补以块修正技术以促进收敛。
标签: 变量
上传时间: 2016-12-28
上传用户:heart520beat