介绍了数据科学领域常用的所有重要机器学习算法以及TensorFlow和特征工程等相关内容。涵盖的算法包括线性回归、逻辑回归、支持向量机、朴素贝叶斯、K均值、随机森林等,这些算法可以用于监督学习、非监督学习、强化学习或半监督学习。
本书在简明扼要地阐明基本原理的基础上,侧重于介绍如何在Python环境下使用机器学习方法库,并通过大量实例清晰形象的展示了不同场景下机器学习方法的应用。