A cylindrical wave expansion method is developed to obtain the scattering field for an ideal two-dimensional cylindrical invisibility cloak. A near-ideal model of the invisibility cloak is set up to solve the boundary problem at the inner boundary of the cloak shell. We confirm that a cloak with the ideal material parameters is a perfect invisibility cloak by systematically studying the change of the scattering coefficients from the near-ideal case to the ideal one. However, due to the slow convergence of the zeroth order scattering coefficients, a tiny perturbation on the cloak would induce a noticeable field scattering and penetration.