When working with mathematical simulations or engineering problems, it is not unusual to handle curves that contains thousands of points. Usually, displaying all the points is not useful, a number of them will be rendered on the same pixel since the screen precision is finite. Hence, you use a lot of resource for nothing! This article presents a fast 2D-line approximation algorithm based on the Douglas-Peucker algorithm (see [1]), well-known in the cartography community. It computes a hull, scaled by a tolerance factor, around the curve by choosing a minimum of key points. This algorithm has several advantages: 这是一个基于Douglas-Peucker算法的二维估值算法。