本文的题目是改进的核函数算法及其在人脸识别中的应用研究。 本文在系统学习现有核函数及支持向量机相关理论的基础上,系统研究了自适应选择核函数算法,通过引入朴素正则风险最小化准则,提出了一种改进的在线核函数算法。算法采用截断误差最小化、合理选取拉格郎日因子等方法对新增样本进行训练,有效地克服了现有方法收敛精度低和不能自适应选择样本的困难。 根据独立分量分析的原理和特点,将改进的核函数算法引入人脸识别的研究中,给出了基于ICA-SVM的人脸识别算法及实现方法。 论文分别应用数值仿真及现有人脸数据库,分析了算法的数值特性并验证了算法的可靠性和实用性。 本文数值仿真与分析软件基于MATLAB和LABVIEW虚拟仪器设计开发。 本文档是nh文件,可以用caj打开。与大家共享!!