为了增加公司收入,F 公司新开设了物流业务。由于 F 公司在业界的良好口碑,物流业务一开通即受到了消费者的欢迎,物流业务马上遍及了城市的每条街道。然而,F 公司现在只安排了小明一个人负责所有街道的服务。
任务虽然繁重,但是小明有足够的信心,他拿到了城市的地图,准备研究最好的方案。城市中有 n 个交叉路口,m 条街道连接在这些交叉路口之间,每条街道的首尾都正好连接着一个交叉路口。除开街道的首尾端点,街道不会在其他位置与其他街道相交。每个交叉路口都至少连接着一条街道,有的交叉路口可能只连接着一条或两条街道。
小明希望设计一个方案,从编号为1的交叉路口出发,每次必须沿街道去往街道另一端的路口,再从
新的路口出发去往下一个路口,直到所有的街道都经过了正好一次。
输入数据格式:
输入的第一行包含两个整数n, m(1≤n≤10, n-1≤m≤20),表示交叉路口的数量和街道的数量,交叉
路口从1到n标号。 接下来m行,每行两个整数a, b,表示和标号为a的交叉路口和标号为b的交叉路口之间有一条街道,
街道是双向的,小明可以从任意一端走向另一端。两个路口之间最多有一条街道。
输出输出格式:
如果小明可以经过每条街道正好一次,则输出一行包含m+1个整数p1, p2, p3, ..., pm+1,表示小明经过的路口的顺序,相邻两个整数之间用一个空格分隔。如果有多种方案满足条件,则输出字典序最小的一种方案,即首先保证p1最小,p1最小的前提下再保证p2最小,依此类推。
如果不存在方案使得小明经过每条街道正好一次,则输出一个整数-1。