随着计算机科学在人机交互领域的极大发展,作为人脸信息处理中的一项关键技术,人脸检测现在已经成为模式识别,计算机视觉和人机交互领域不可缺少的一部分。但是,人脸检测算法存在计算量大、速度慢等缺点。软件实现方式无法达到实时处理要求,而现有的硬件实现需要占用大量硬件资源。 本文针对现有人脸检测硬件实现的缺点,通过对Adaboost算法和现有硬件结构的分析,提出了双流水线硬件检测架构:扫描窗口流水线、特征向量流水线。并在Vertex-II Pro FPGA平台验证成功,达到实时检测的标准。具体工作和创新点包括如下几点: 介绍了人脸检测的原理以及人脸检测经典算法。其中,详细介绍了Adaboost算法。 对现有的结构进行详细分析。指出现有各架构的缺点,即资源占用多,检测速度慢。针对这两个问题,本文提出了一个适合嵌入式应用的扫描窗口、特征向量双流水线检测硬件架构,详细说明了该架构的工作原理,并在该架构基础上,通过加入预测加载技术,进一步提高检测速度。随后,采用存储器访问效率,架构内部存储单元大小,检测时间长短,运算单元数量四个标准,详细比较了新架构和现有架构的差别,显示出新架构的优势。 基于提出的架构,给出了Adaboost人脸检测系统的VLSI实现方案。本文中,采用自顶向下的设计方法将人脸检测系统分成若干个子模块,然后对每个子模块进行详细的设计和说明,给出了每个子模块的硬件架构、状态转换以及verilog实现后的仿真波形。 采用Xilinx公司的VII Pro FPGA开发板完成人脸检测系统的硬件验证。FPGA验证结果表明对于QCIF分辨率的视频图像,人脸检测系统能够达到50fps的检测速度,满足实时检测的要求。